- -

Optimizing Lithium-Ion Battery Modeling: A Comparative Analysis of PSO and GWO Algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing Lithium-Ion Battery Modeling: A Comparative Analysis of PSO and GWO Algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Camas-Náfate, Monica es_ES
dc.contributor.author Coronado-Mendoza, Alberto es_ES
dc.contributor.author Vargas-Salgado, Carlos es_ES
dc.contributor.author Águila-León, Jesús es_ES
dc.contributor.author Alfonso-Solar, David es_ES
dc.date.accessioned 2024-02-27T19:01:32Z
dc.date.available 2024-02-27T19:01:32Z
dc.date.issued 2024-02-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202784
dc.description.abstract [EN] In recent years, the modeling and simulation of lithium-ion batteries have garnered attention due to the rising demand for reliable energy storage. Accurate charge cycle predictions are fundamental for optimizing battery performance and lifespan. This study compares particle swarm optimization (PSO) and grey wolf optimization (GWO) algorithms in modeling a commercial lithium-ion battery, emphasizing the voltage behavior and the current delivered to the battery. Bio-inspired optimization tunes parameters to reduce the root mean square error (RMSE) between simulated and experimental outputs. The model, implemented in MATLAB/Simulink, integrates electrochemical parameters and estimates battery behavior under varied conditions. The assessment of terminal voltage revealed notable enhancements in the model through both the PSO and GWO algorithms compared to the non-optimized model. The GWO-optimized model demonstrated superior performance, with a reduced RMSE of 0.1700 (25 °C; 3.6 C, 455 s) and 0.1705 (25 °C; 3.6 C, 10,654 s) compared to the PSO-optimized model, achieving a 42% average RMSE reduction. Battery current was identified as a key factor influencing the model analysis, with optimized models, particularly the GWO model, exhibiting enhanced predictive capabilities and slightly lower RMSE values than the PSO model. This offers practical implications for battery integration into energy systems. Analyzing the execution time with different population values for PSO and GWO provides insights into computational complexity. PSO exhibited greater-than-linear dynamics, suggesting a polynomial complexity of O(nk), while GWO implied a potential polynomial complexity within the range of O(nk) or O(2n) based on execution times from populations of 10 to 1000. es_ES
dc.description.sponsorship This work has been supported by ¿Modelado, experimentación y desarrollo de sistemas de gestión óptima para microrredes híbridas renovables¿ (CIGE/2021/172) (1 January 2022¿31 December 2023), Investigación competitiva proyectos, Conselleria de Educación, and Universidades y Empleo GENERALITAT VALENCIANA. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Particle Swarm Optimization (PSO) es_ES
dc.subject Grey Wolf Optimizer (GWO) es_ES
dc.subject Lithium-ion battery modeling es_ES
dc.subject Charge-discharge cycle predictions es_ES
dc.subject Bio-inspired algorithms es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Optimizing Lithium-Ion Battery Modeling: A Comparative Analysis of PSO and GWO Algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en17040822 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIGE%2F2021%2F172//Modelado, experimentación y desarrollo de sistemas de gestión óptima para microrredes híbridas renovables/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Camas-Náfate, M.; Coronado-Mendoza, A.; Vargas-Salgado, C.; Águila-León, J.; Alfonso-Solar, D. (2024). Optimizing Lithium-Ion Battery Modeling: A Comparative Analysis of PSO and GWO Algorithms. Energies. 17(4). https://doi.org/10.3390/en17040822 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en17040822 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\508592 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Universitat Politècnica de València


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem