Mostrar el registro sencillo del ítem
dc.contributor.author | Juan, Angel A. | es_ES |
dc.contributor.author | Ammouriova, Majsa | es_ES |
dc.contributor.author | Tsertsvadze, Verónika | es_ES |
dc.contributor.author | Osorio, Celia | es_ES |
dc.contributor.author | Fuster, Noelia | es_ES |
dc.contributor.author | Ahsini, Yusef | es_ES |
dc.date.accessioned | 2024-02-27T19:01:41Z | |
dc.date.available | 2024-02-27T19:01:41Z | |
dc.date.issued | 2023-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202787 | |
dc.description.abstract | [EN] With the increasing demand for sustainable urban development, smart cities have emerged as a promising solution for optimizing energy usage, reducing emissions, and enhancing the quality of life for citizens. In this context, the combined use of key performance indicators (KPIs) and data analytics has gained significant attention as a powerful tool for promoting energy efficiency and emissions reduction in urban areas. This paper presents a comprehensive conceptual framework in which a series of KPIs are proposed to serve as essential metrics for guiding, monitoring, and assessing energy efficiency and emissions reduction levels in smart cities. Some of the included KPIs in the analysis are 'annual energy consumption per person', 'reduction in greenhouse gas emissions', 'public transport use', and 'adoption of renewable energy'. By incorporating these KPIs, city planners and policymakers can gain valuable insights into the effectiveness of sustainability initiatives. Furthermore, the paper explores how the integration of KPIs with data analytics can be used for monitoring and assessing the overall performance of the city in terms of energy efficiency, emissions reduction, and the enhancement of urban living conditions. Visualization tools, such as radar plots, and time series analysis forecasting methods allow data to be processed and patterns to be identified, enabling informed decision-making and efficient resource allocation. Real-life case studies of ongoing smart city projects are presented in the paper, which also provides a KPI comparison among different European cities, as well as models to forecast the evolution of KPIs related to energy usage and emissions reduction in different European cities. | es_ES |
dc.description.sponsorship | This work has been partially funded by the European Commission (UP2030, HORIZONMISS-2021-CIT-02-01-101096405), and the Spanish Ministry of Science and Innovation (PID2022-138860NB-I00 and RED2022-134703-T). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Energies | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Urban areas | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Emissions reduction | es_ES |
dc.subject | Key performance indicators | es_ES |
dc.subject | Data analytics | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/en16207195 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//HORIZON-MISS-2021-CIT-02-01-101096405/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Juan, AA.; Ammouriova, M.; Tsertsvadze, V.; Osorio, C.; Fuster, N.; Ahsini, Y. (2023). Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics. Energies. 16(20). https://doi.org/10.3390/en16207195 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/en16207195 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 20 | es_ES |
dc.identifier.eissn | 1996-1073 | es_ES |
dc.relation.pasarela | S\509511 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |