Mostrar el registro sencillo del ítem
dc.contributor.author | Puche Panadero, Marta | es_ES |
dc.contributor.author | García-Aboal, Rocío | es_ES |
dc.contributor.author | Mikhaylov, Maxim A. | es_ES |
dc.contributor.author | Sokolov, Maxim N. | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | Feliz Rodriguez, Marta | es_ES |
dc.date.accessioned | 2024-02-29T19:03:25Z | |
dc.date.available | 2024-02-29T19:03:25Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/202862 | |
dc.description.abstract | [EN] Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV-Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, "liquid-phase" catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor. | es_ES |
dc.description.sponsorship | This research was funded by the Severo Ochoa Program, grant number SEV-2016-0683, Ministerio de Ciencia e Innovacion, grant number PGC2018-099744, Consejo Superior de Investigaciones Cientificas, grant number I-Link1063, and Russian Foundation for Basic Research, grant number 18-33-20056. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Metal cluster | es_ES |
dc.subject | Molybdenum | es_ES |
dc.subject | Graphene oxide | es_ES |
dc.subject | Nanocomposite | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Hydrogen generation | es_ES |
dc.title | Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo(6)Iodide Clusters Supported on Graphene Oxide | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano10071259 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-099744-B-I00/ES/AMPLIFICACION DE LOS FENOMENOS OPTOELECTRONICOS EN MICROCAVIDADES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RFBR//18-33-20056/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Puche Panadero, M.; García-Aboal, R.; Mikhaylov, MA.; Sokolov, MN.; Atienzar Corvillo, PE.; Feliz Rodriguez, M. (2020). Enhanced Photocatalytic Activity and Stability in Hydrogen Evolution of Mo(6)Iodide Clusters Supported on Graphene Oxide. Nanomaterials. 10(7). https://doi.org/10.3390/nano10071259 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano10071259 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.identifier.pmid | 32605229 | es_ES |
dc.identifier.pmcid | PMC7407389 | es_ES |
dc.relation.pasarela | S\432470 | es_ES |
dc.contributor.funder | Russian Foundation for Basic Research | es_ES |
dc.contributor.funder | Instituto de Tecnología Química UPV-CSIC | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD | es_ES |