- -

Hybrid data-driven and mechanism-modeling approaches for online injection rate sensing of dual-fuel co-direct injector under carbon neutral background

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid data-driven and mechanism-modeling approaches for online injection rate sensing of dual-fuel co-direct injector under carbon neutral background

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yang, Xiyu es_ES
dc.contributor.author Dong, Quan es_ES
dc.contributor.author Wang, Xiaoyan es_ES
dc.contributor.author Wei, Daijun es_ES
dc.date.accessioned 2024-03-01T19:01:23Z
dc.date.available 2024-03-01T19:01:23Z
dc.date.issued 2023-10 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202883
dc.description.abstract [EN] This study proposes an innovative concept for online sensing of the injection process. By using the injector inlet as the pressure signal detection point, contactless testing of the injector is achieved, theoretically requiring no structural changes to commercial engines or standard injectors. For the pilot diesel injection, the pressure signal is abstracted as the evolution and transmission of Riemann waves, and the relationship between pressure and mass flow rate is established. Additionally, correction and decoupling methods for system interference and superimposed waves are proposed to extract Riemann single-wave components caused by injection. For the main fuel gas injection process, a data-driven injection mass neural network prediction model is constructed based on the pressure drop characteristic, which achieves quantitative sensing of the injection characteristics. Moreover, concerning gas pressure fluctuation, the interference phenomenon in the first-order differential pressure signal is identified. It is found that gas pressure waves propagate as second-order micro-pressure in the HPDI system, and the columns of pressure waves do not interfere with each other. A qualitative reconstruction method for the injection rate curve is developed based on 1D mechanistic models. In conclusion, this study uses hybrid datadriven and mechanism-modeling approaches to achieve online sensing. By comparing with offline testing methods, it exhibits high accuracy, with errors in the majority of injection parameters remaining within 5.5%. es_ES
dc.description.sponsorship This work was supported by the National Natural Science Foundation of China (Grant nos. 51406040) , the Research Fund for Doctoral Program of Higher Education of China (Grant no. 160030110005) , Post- doctoral Science Foundation (Grant no.2015M571392) , and Heilongjiang Postdoctoral Science Foundation (Grant no. LBH-Z14053) , China National Government Scholarship for Studying Abroad (China Scholarship Council, Student ID: 202206680035) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject E-Fuel es_ES
dc.subject Internal combustion engine es_ES
dc.subject Dual-fuel injection characteristics es_ES
dc.subject Pressure wave es_ES
dc.subject Online sensing es_ES
dc.title Hybrid data-driven and mechanism-modeling approaches for online injection rate sensing of dual-fuel co-direct injector under carbon neutral background es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2023.130229 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//51406040/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSC//202206680035/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SRFDP//160030110005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/China Postdoctoral Science Foundation//2015M571392/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Heilongjiang Postdoctoral Science Foundation//LBH-Z14053/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.description.bibliographicCitation Yang, X.; Dong, Q.; Wang, X.; Wei, D. (2023). Hybrid data-driven and mechanism-modeling approaches for online injection rate sensing of dual-fuel co-direct injector under carbon neutral background. Fuel. 358. https://doi.org/10.1016/j.fuel.2023.130229 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2023.130229 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 358 es_ES
dc.relation.pasarela S\509223 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder China Postdoctoral Science Foundation es_ES
dc.contributor.funder Heilongjiang Postdoctoral Science Foundation es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Specialized Research Fund for the Doctoral Program of Higher Education of China es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem