- -

Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Behl, Ramandeep es_ES
dc.contributor.author Arora, Himani es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Singh, Tajinder es_ES
dc.date.accessioned 2024-03-08T11:18:31Z
dc.date.available 2024-03-08T11:18:31Z
dc.date.issued 2023-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/202998
dc.description.abstract [EN] In this study, we suggest a new iterative family of iterative methods for approximating the roots with multiplicity in nonlinear equations. We found a lack in the approximation of multiple roots in the case that the nonlinear operator be non-differentiable. So, we present, in this paper, iterative methods that do not use the derivative of the non-linear operator in their iterative expression. With our new iterative technique, we find better numerical results of Planck's radiation, Van Der Waals, Beam designing, and Isothermal continuous stirred tank reactor problems. Divided difference and weight function approaches are adopted for the construction of our schemes. The convergence order is studied thoroughly in the Theorems 1 and 2, for the case when multiplicity p = 2. The obtained numerical results illustrate the preferable outcomes as compared to the existing ones in terms of absolute residual errors, number of iterations, computational order of convergence (COC), and absolute error difference between two consecutive iterations. es_ES
dc.description.sponsorship Tajinder Singh acknowledges CSIR for financial support under the Grant No. 09/0254(11217)/2021-EMR-I. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Axioms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Steffensen's method es_ES
dc.subject Nonlinear equations es_ES
dc.subject Optimal iterative methods es_ES
dc.subject Multiple roots es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/axioms12030270 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIR//09%2F0254(11217)%2F2021-EMR-I/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Behl, R.; Arora, H.; Martínez Molada, E.; Singh, T. (2023). Approximating Multiple Roots of Applied Mathematical Problems Using Iterative Techniques. Axioms. 12(3). https://doi.org/10.3390/axioms12030270 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/axioms12030270 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2075-1680 es_ES
dc.relation.pasarela S\509991 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem