Mostrar el registro sencillo del ítem
dc.contributor.author | Yadav, Sonia | es_ES |
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.contributor.author | Hernández-Verón, M. A. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Kumar, Ajay | es_ES |
dc.contributor.author | Badoni, R.P. | es_ES |
dc.date.accessioned | 2024-03-08T11:18:44Z | |
dc.date.available | 2024-03-08T11:18:44Z | |
dc.date.issued | 2023-11-15 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203007 | |
dc.description.abstract | [EN] The significance of our work is to solve some second-order nonlinear boundary value prob-lems. To do this, we take into account the equivalence of the problems considered with certain integral equations, we will obtain a fixed-point-type result for these integral equa-tions. This result provides us the existence and uniqueness of solutions for the second -order nonlinear boundary value problems considered. As a novelty, we will use for this fixed-point-type result a family of third order iterative processes to approximate the so-lution, instead of the usually considered method of Successive Approximations of linear convergence. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22 and by the project EEQ/2018/000720 under Science and Engineering Research Board. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Global Convergence | es_ES |
dc.subject | Convergence Balls | es_ES |
dc.subject | Third order Iterative Process | es_ES |
dc.subject | Recurrence Relations | es_ES |
dc.subject | Integral Equations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | About the existence and uniqueness of solutions for some second-order nonlinear BVPs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2023.128218 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SERB//EEQ%2F2018%2F000720/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Yadav, S.; Singh, S.; Hernández-Verón, MA.; Martínez Molada, E.; Kumar, A.; Badoni, R. (2023). About the existence and uniqueness of solutions for some second-order nonlinear BVPs. Applied Mathematics and Computation. 457. https://doi.org/10.1016/j.amc.2023.128218 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.amc.2023.128218 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 457 | es_ES |
dc.relation.pasarela | S\509986 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Science and Engineering Research Board, India | es_ES |