- -

De Python a Kubeflow

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

De Python a Kubeflow

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Acebrón Linuesa, Floreal es_ES
dc.contributor.author Gutiérrez Villalba, Sergio es_ES
dc.date.accessioned 2024-03-28T09:57:14Z
dc.date.available 2024-03-28T09:57:14Z
dc.date.created 2024-03-13
dc.date.issued 2024-03-28 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203150
dc.description.abstract [EN] With the rapid advancement of technology development for various purposes, companies, institutions and even individuals are contracting computing capacity and storage in Cloud environments, which allow iterating any solution more quickly and efficiently, leaving such vital matters in the hands of the provider. how the maintenance of the infrastructure and its scalability. Providers such as AWS, GCP and Azure (United States) and to a lesser extent, OVH Cloud (Europe) have a large share of the market, offering solutions for practically any problem. Applications run in these environments are often replicated and scaled through virtualization and the use of containers. When the number of these containers (replicas of the same server or a web application, for example) becomes large, the use of some orchestration tool is essential, which allows managing, updating and scaling these containers in an organized and sustainable way. . For this purpose, the most widely used tool today is Kubernetes. On the other hand, many organizations, whether public (universities and research centers) or private (companies) are increasingly interested in deep learning, training neural networks (NN), which can have very varied functions. that allow them to solve the problems they face. The objective of the TFG is to take an evolutionary tour of the tools that can be used to train NN, analyzing the pros and cons of each one of them. Work environments will be created and executed that allow real tests to be carried out with each of the tools used. The database with which the NN will be trained will be that of the MNIST (database of handwritten digits), being initially implemented in Python. Throughout the dissertation, this approach will evolve through the use of libraries such as NumPy, Jupyter Notebooks, TensorFlow and Keras to make the environment that enables NN training more friendly, agile and effective. Once these tools have been analyzed, we will jump to the Cloud environment where we will be able to train the same network using KubeFlow, a set of tools that automates all the training steps using a K8S cluster as execution support. It will start with a local deployment using MiniKF, a tool that allows KubeFlow to be used on a local virtual machine or in a cloud environment. Finally, a real K8S cluster will be deployed on one of the previously mentioned providers and the Kubeflow toolset will be installed on said cluster. This open source tool will be compared with solutions from the cloud environment. es_ES
dc.description.abstract [ES] El trabajo en el campo de la inteligencia artificial y específicamente en el del aprendizaje automático con las redes neuronales como punta de lanza, está cobrando más relevancia que nunca. La aparición de herramientas que emplean modelos entrenados como GPT-3 o GPT-4 han popularizado el uso de la inteligencia artificial a través de aplicaciones como ChatGPT o Claude. Dentro de este contexto y del avance futuro de campos como la IA generativa o el reconocimiento del lenguaje natural, se resalta la relevancia y el impacto de los recursos educativos que permiten introducir de forma eficaz y didáctica a cualquier ingeniero en estos temas. Siguiendo esta línea, el trabajo propuesto aborda el análisis, configuración y uso de tecnologías que permiten entrenar y poner a punto modelos de redes neuronales, de forma robusta, escalable y eficiente en recursos. es_ES
dc.description.abstract [EN] The work in the field of artificial intelligence, specifically in machine learning with neural networks as the spearhead, is gaining more relevance than ever. The emergence of tools that employ trained models like GPT-3 or GPT-4 has popularized the use of artificial intelligence through applications like ChatGPT or Claude. Within this context and the future advancement of areas such as generative AI or natural language recognition, the significance and impact of educational resources that effectively and didactically introduce any engineer to these subjects are highlighted. Following this line, the proposed work addresses the analysis, configuration, and utilization of technologies that enable the training and fine-tuning of neural network models in a robust, scalable, and resource-efficient manner. es_ES
dc.format.extent 84 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Redes neuronales es_ES
dc.subject Inteligencia artificial es_ES
dc.subject Python es_ES
dc.subject Kubeflow es_ES
dc.subject Tensorflow es_ES
dc.subject Servicios en la nube es_ES
dc.subject Vertex AI es_ES
dc.subject Google Cloud Platform es_ES
dc.subject Neural networks es_ES
dc.subject Artificial intelligence es_ES
dc.subject Cloud services es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.other Grado en Ingeniería Informática-Grau en Enginyeria Informàtica es_ES
dc.title De Python a Kubeflow es_ES
dc.title.alternative From Python to Kubeflow es_ES
dc.title.alternative De Python a Kubeflow es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Gutiérrez Villalba, S. (2024). De Python a Kubeflow. Universitat Politècnica de València. http://hdl.handle.net/10251/203150 es_ES
dc.description.accrualMethod TFGM es_ES
dc.relation.pasarela TFGM\157578 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem