- -

Application assessment of UV-vis and NIR spectroscopy for the quantification of fuel dilution problems on used engine oils

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Application assessment of UV-vis and NIR spectroscopy for the quantification of fuel dilution problems on used engine oils

Show simple item record

Files in this item

dc.contributor.author Macian Martinez, Vicente es_ES
dc.contributor.author Tormos, B. es_ES
dc.contributor.author García-Barberá, Antonio es_ES
dc.contributor.author Balaguer-Reyes, Adbeel es_ES
dc.date.accessioned 2024-04-11T07:37:57Z
dc.date.available 2024-04-11T07:37:57Z
dc.date.issued 2023-02-01 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203309
dc.description.abstract [EN] Fuel dilution in engine oil is a frequent problem in internal combustion engines (ICE); its main consequence is the reduction of the oil viscosity, decreasing lubrication film strength, and causing a negative impact on friction and wear. The standard and more precise methods for assessing fuel content in oil are based on chromatographic analysis (e.g., ASTM D3524, ASTM D7593), requiring high-cost equipment and highly qualified personnel. This work performed a study to propose an alternative method for quantifying diesel fuel dilution in used engine oil by UV¿vis and NIR spectroscopy. The samples for the study were prepared from used oil from six different vehicles with various mileages. According to the results obtained in this study, NIR spectroscopy proved to be the most suitable method for the quantification of diesel fuel in used engine oils. Furthermore, the use of NIR spectroscopy combined with multivariate calibration methods could predict the fuel concentration of the samples used for validating the model. The best predictive model for the quantification was obtained by Partial Least Squares Regression, which achieved a Root Mean Squared Error of prediction of 0.436% and a coefficient of determination of 0.9435. In comparison, the parameters for Principal Component Regression were 1.049% and 0.8441, respectively. es_ES
dc.description.sponsorship Acknowledgments This work has been partially supported by grant PID2020-119691RB-100 funded by MCIN/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Fuel dilution es_ES
dc.subject Quantification es_ES
dc.subject NIR spectroscopy es_ES
dc.subject Engine oil analysis es_ES
dc.subject UV-Visible spectroscopy es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Application assessment of UV-vis and NIR spectroscopy for the quantification of fuel dilution problems on used engine oils es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2022.126350 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119691RB-I00/ES/MANTENIMIENTO Y CONTROL OPTIMO DE VEHICULOS HIBRIDOS DE TRANSPORTE URBANO MEDIANTE DATOS DEL CONTEXTO OPERACIONAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Macian Martinez, V.; Tormos, B.; García-Barberá, A.; Balaguer-Reyes, A. (2023). Application assessment of UV-vis and NIR spectroscopy for the quantification of fuel dilution problems on used engine oils. Fuel. 333. https://doi.org/10.1016/j.fuel.2022.126350 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2022.126350 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 333 es_ES
dc.relation.pasarela S\483364 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


This item appears in the following Collection(s)

Show simple item record