- -

A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Neroni, Mattia es_ES
dc.contributor.author Bertolini, Massimo es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.date.accessioned 2024-04-11T07:53:55Z
dc.date.available 2024-04-11T07:53:55Z
dc.date.issued 2024-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203327
dc.description.abstract [EN] In automated storage and retrieval systems (AS/RSs), the utilization of intelligent algorithms can reduce the makespan required to complete a series of input/output operations. This paper introduces a simulation optimization algorithm designed to minimize the makespan in a realistic AS/RS commonly found in the steel sector. This system includes weight and quality constraints for the selected items. Our hybrid approach combines discrete event simulation with biased-randomized heuristics. This combination enables us to efficiently address the complex time dependencies inherent in such dynamic scenarios. Simultaneously, it allows for intelligent decision making, resulting in feasible and high-quality solutions within seconds. A series of computational experiments illustrates the potential of our approach, which surpasses an alternative method based on traditional simulated annealing. es_ES
dc.description.sponsorship This work was partially funded by the Horizon Europe program (HORIZON-CL4-2022-HUMAN-01-14-101092612 SUN and HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294 AIDEAS), as well as by the Generalitat Valenciana (PROMETEO/2021/065) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Automated storage and retrieval system es_ES
dc.subject Makespan minimization es_ES
dc.subject Simulation optimization es_ES
dc.subject Discrete event simulation es_ES
dc.subject Biased-randomized algorithms es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a17010046 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101057294/EU/AI Driven industrial Equipment product life cycle boosting Agility, Sustainability and resilience/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Neroni, M.; Bertolini, M.; Juan, AA. (2024). A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry. Algorithms. 17(1). https://doi.org/10.3390/a17010046 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/a17010046 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1999-4893 es_ES
dc.relation.pasarela S\510015 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem