Mostrar el registro sencillo del ítem
dc.contributor.author | Neroni, Mattia | es_ES |
dc.contributor.author | Bertolini, Massimo | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2024-04-11T07:53:55Z | |
dc.date.available | 2024-04-11T07:53:55Z | |
dc.date.issued | 2024-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203327 | |
dc.description.abstract | [EN] In automated storage and retrieval systems (AS/RSs), the utilization of intelligent algorithms can reduce the makespan required to complete a series of input/output operations. This paper introduces a simulation optimization algorithm designed to minimize the makespan in a realistic AS/RS commonly found in the steel sector. This system includes weight and quality constraints for the selected items. Our hybrid approach combines discrete event simulation with biased-randomized heuristics. This combination enables us to efficiently address the complex time dependencies inherent in such dynamic scenarios. Simultaneously, it allows for intelligent decision making, resulting in feasible and high-quality solutions within seconds. A series of computational experiments illustrates the potential of our approach, which surpasses an alternative method based on traditional simulated annealing. | es_ES |
dc.description.sponsorship | This work was partially funded by the Horizon Europe program (HORIZON-CL4-2022-HUMAN-01-14-101092612 SUN and HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294 AIDEAS), as well as by the Generalitat Valenciana (PROMETEO/2021/065) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Automated storage and retrieval system | es_ES |
dc.subject | Makespan minimization | es_ES |
dc.subject | Simulation optimization | es_ES |
dc.subject | Discrete event simulation | es_ES |
dc.subject | Biased-randomized algorithms | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a17010046 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101057294/EU/AI Driven industrial Equipment product life cycle boosting Agility, Sustainability and resilience/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//PROMETEO%2F2021%2F065//"Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Neroni, M.; Bertolini, M.; Juan, AA. (2024). A Biased-Randomized Discrete Event Algorithm to Improve the Productivity of Automated Storage and Retrieval Systems in the Steel Industry. Algorithms. 17(1). https://doi.org/10.3390/a17010046 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/a17010046 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1999-4893 | es_ES |
dc.relation.pasarela | S\510015 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |