- -

Automatic Rule Generation for Decision-Making in Context-Aware Systems Using Machine Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Rule Generation for Decision-Making in Context-Aware Systems Using Machine Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roua, Jabla es_ES
dc.contributor.author Khemaja, Maha es_ES
dc.contributor.author Buendía García, Félix es_ES
dc.contributor.author Faiz, Sami es_ES
dc.date.accessioned 2024-04-11T07:56:25Z
dc.date.available 2024-04-11T07:56:25Z
dc.date.issued 2022-05-06 es_ES
dc.identifier.issn 1687-5265 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203332
dc.description.abstract [EN] With the increasing interest devoted to dynamic environments, a crucial aspect is revealed in context-aware systems to deal with the rapid changes occurring in users¿ surrounding environments at runtime. However, most context-aware systems with predefined context-aware rules may not support effective decision-making in dynamic environments. These context-aware rules, which take into account different context information to reach an appropriate decision, could lose their efficiency at runtime. Therefore, a growing need is emerging to address the decision-making issue leveraged by dynamic environments. To tackle this issue, we present an approach that relies on improving decision-making in the wake of dynamic environments through automatically enriching a rule knowledge base with new context-aware rules discovered at runtime. The major features of the presented approach are as follows: (i) a hybridization of two machine learning algorithms for rule generation, (ii) an extended genetic algorithm (GA) for rule optimization, and (iii) a rule transformation for the knowledge base enrichment in an automated manner. Furthermore, extensive experiments on different datasets are performed to assess the effectiveness of the presented approach. The obtained experimental results depict that this approach exhibits better effectiveness compared to some algorithms and state-of-the-art works. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Computational Intelligence and Neuroscience es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Automatic Rule es_ES
dc.subject Decision-Making es_ES
dc.subject Context-Aware Systems es_ES
dc.subject Machine Learning es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Automatic Rule Generation for Decision-Making in Context-Aware Systems Using Machine Learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2022/5202537 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Roua, J.; Khemaja, M.; Buendía García, F.; Faiz, S. (2022). Automatic Rule Generation for Decision-Making in Context-Aware Systems Using Machine Learning. Computational Intelligence and Neuroscience. 2022:1-13. https://doi.org/10.1155/2022/5202537 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2022/5202537 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2022 es_ES
dc.identifier.pmid 35571723 es_ES
dc.identifier.pmcid PMC9106481 es_ES
dc.relation.pasarela S\465857 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem