- -

Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Franch-Gras, Belen es_ES
dc.contributor.author San Bautista Primo, Alberto es_ES
dc.contributor.author Fita-Silvestre, David es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.contributor.author Tarrazó-Serrano, Daniel es_ES
dc.contributor.author Sánchez, Antonio es_ES
dc.contributor.author Skakun, Sergii es_ES
dc.contributor.author Vermote, Eric es_ES
dc.contributor.author Becker-Reshef, Inbal es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.date.accessioned 2024-04-11T08:00:37Z
dc.date.available 2024-04-11T08:00:37Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 2072-4292 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203339
dc.description.abstract [EN] Rice is considered one of the most important crops in the world. According to the Food and Agriculture Organization of the United Nations (FAO), rice production has increased significantly (156%) during the last 50 years, with a limited increase in cultivated area (24%). With the recent advances in remote sensing technologies, it is now possible to monitor rice crop production for a better understanding of its management at field scale to ultimately improve rice yields. In this work, we monitor within-field rice production of the two main rice varieties grown in Valencia (Spain) JSendra and Bomba during the 2020 season. The sowing date of both varieties was May 22-25, while the harvesting date was September 15-17 for Bomba and October 5-8 for JSendra. Rice yield data was collected over 66.03 ha (52 fields) by harvesting machines equipped with onboard sensors that determine the dry grain yield within irregular polygons of 3-7 m width. This dataset was split in two, selecting 70% of fields for training and 30% for validation purposes. Sentinel-2 surface reflectance spectral data acquired from May until September 2020 was considered over the test area at the two different spatial resolutions of 10 and 20 m. These two datasets were combined assessing the best combination of spectral reflectance bands (SR) or vegetation indices (VIs) as well as the best timing to infer final within-field yields. The results show that SR improves the performance of models with VIs. Furthermore, the correlation of each spectral band and VIs with the final yield changes with the dates and varieties. Considering the training data, the best correlation with the yields is obtained on July 4, with R-2 for JSendra of 0.72 at 10 m and 0.76 at 20 m resolution, while the R-2 for Bomba is 0.87 at 10 m and 0.92 at 20 m resolution. Based on the validation dataset, the proposed models provide within-field yield modelling Mean Absolute Error (MAE) of 0.254 t.ha(-1) (Mean Absolute Percentage Error, MAPE, of 3.73%) for JSendra at 10 m (0.240 t.ha(-1); 3.48% at 20 m) and 0.218 t.ha(-1) (MAPE 5.82%) for Bomba (0.223 t.ha(-1); 5.78% at 20 m) on July 4, that is three months before harvest. At parcel level the model's MAE is 0.176 t.ha(-1) (MAPE 2.61%) for JSendra and 0.142 t.ha(-1) (MAPE 4.51%) for Bomba. These results confirm the close correlation between the rice yield and the spectral information from satellite imagery. Additionally, these models provide a timeliness overview of underperforming areas within the field three months before the harvest where farmers can improve their management practices. Furthermore, it highlights the importance of optimum agronomic management of rice plants during the first weeks of rice cultivation (40-50 days after sowing) to achieve high yields. es_ES
dc.description.sponsorship This research was partially funded by the program Generacio Talent of Generalitat Valenciana (CIDEGENT/2018/009). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Remote Sensing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Agriculture es_ES
dc.subject Yield es_ES
dc.subject Within-field es_ES
dc.subject Rice es_ES
dc.subject Remote sensing es_ES
dc.subject Sentinel-2 es_ES
dc.subject Surface reflectance es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/rs13204095 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F009//Generacio Talent of the Generalitat Valenciana/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Franch-Gras, B.; San Bautista Primo, A.; Fita-Silvestre, D.; Rubio Michavila, C.; Tarrazó-Serrano, D.; Sánchez, A.; Skakun, S.... (2021). Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. Remote Sensing. 13(20). https://doi.org/10.3390/rs13204095 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/rs13204095 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 20 es_ES
dc.relation.pasarela S\447193 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.subject.ods 01.- Erradicar la pobreza en todas sus formas en todo el mundo es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem