Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro, Francisco I. | es_ES |
dc.contributor.author | Garrido-Saez, Neus | es_ES |
dc.contributor.author | Jerezano, Julissa H. | es_ES |
dc.contributor.author | Pérez-Palau, Daniel | es_ES |
dc.date.accessioned | 2024-04-11T10:07:32Z | |
dc.date.available | 2024-04-11T10:07:32Z | |
dc.date.issued | 2023-04 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203375 | |
dc.description.abstract | [EN] We present a new iterative procedure for solving nonlinear equations with multiple roots with high efficiency. Starting from the arithmetic mean of Newton's and Chebysev's methods, we generate a two-step scheme using weight functions, resulting in a family of iterative methods that satisfies the Kung and Traub conjecture, yielding an optimal family for different choices of weight function. We have performed an in-depth analysis of the stability of the family members, in order to select those members with the highest stability for application in solving mathematical chemistry problems. We show the good characteristics of the selected methods by applying them on four relevant chemical problems. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was partially supported by Grant PGC2018-095896-B-C22, funded by MCIN/AEI/10.13039/5011000113033 by "ERDF A way of making Europe", European Union; and by the internal research project ADMIREN of Universidad Internacional de La Rioja (UNIR). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject | Multiple-root | es_ES |
dc.subject | Chemical application | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Family of fourth-order optimal classes for solving multiple-root nonlinear equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-022-01429-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Chicharro, FI.; Garrido-Saez, N.; Jerezano, JH.; Pérez-Palau, D. (2023). Family of fourth-order optimal classes for solving multiple-root nonlinear equations. Journal of Mathematical Chemistry. 61(4):736-760. https://doi.org/10.1007/s10910-022-01429-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-022-01429-5 | es_ES |
dc.description.upvformatpinicio | 736 | es_ES |
dc.description.upvformatpfin | 760 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\482698 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |