- -

A New Third-Order Family of Multiple Root-Findings Based on Exponential Fitted Curve

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Third-Order Family of Multiple Root-Findings Based on Exponential Fitted Curve

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kanwar, Vinay es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Rajput, Mithil es_ES
dc.contributor.author Behl, Ramandeep es_ES
dc.date.accessioned 2024-04-11T10:07:34Z
dc.date.available 2024-04-11T10:07:34Z
dc.date.issued 2023-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203376
dc.description.abstract [EN] In this paper, we present a new third-order family of iterative methods in order to compute the multiple roots of nonlinear equations when the multiplicity (m >= 1) is known in advance. There is a plethora of third-order point-to-point methods, available in the literature; but our methods are based on geometric derivation and converge to the required zero even though derivative becomes zero or close to zero in vicinity of the required zero. We use the exponential fitted curve and tangency conditions for the development of our schemes. Well-known Chebyshev, Halley, super-Halley and Chebyshev-Halley are the special members of our schemes for m=1. Complex dynamics techniques allows us to see the relation between the element of the family of iterative schemes and the wideness of the basins of attraction of the simple and multiple roots, on quadratic polynomials. Several applied problems are considered in order to demonstrate the performance of our methods and for comparison with the existing ones. Based on the numerical outcomes, we deduce that our methods illustrate better performance over the earlier methods even though in the case of multiple roots of high multiplicity. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear equation es_ES
dc.subject Order of convergence es_ES
dc.subject Stability es_ES
dc.subject Multiple roots es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A New Third-Order Family of Multiple Root-Findings Based on Exponential Fitted Curve es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a16030156 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Kanwar, V.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rajput, M.; Behl, R. (2023). A New Third-Order Family of Multiple Root-Findings Based on Exponential Fitted Curve. Algorithms. 16(3). https://doi.org/10.3390/a16030156 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/a16030156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1999-4893 es_ES
dc.relation.pasarela S\513169 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem