- -

Inception 1D-convolutional neural network for accurate prediction of electrical insulator leakage current from environmental data during its normal operation using long-term recording

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inception 1D-convolutional neural network for accurate prediction of electrical insulator leakage current from environmental data during its normal operation using long-term recording

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bueno Barrachina, José Manuel es_ES
dc.contributor.author Ye Lin, Yiyao es_ES
dc.contributor.author Nieto del-Amor, Félix es_ES
dc.contributor.author Fuster Roig, Vicente Luis es_ES
dc.date.accessioned 2024-04-11T10:07:41Z
dc.date.available 2024-04-11T10:07:41Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 0952-1976 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203380
dc.description.abstract [EN] Contamination flashover remains one of the biggest challenges for power grid designers and maintenance engineers. Insulator leakage current contains relevant information about their state so that continuous monitoring is considered the most effective way to prevent contamination flashover. In this work, we attempted to accurately predict insulator leakage current in real time during normal operations based on environmental data using long-term recordings. We first confirmed that the history of environmental data also contained relevant information to predict leakage current by conditional Granger analysis and determined that 20 was the optimal previous samples number for this purpose. We then compared the performance of typical regression models and convolutional neural network (CNN), when using both current and the last 21 samples as input features. We confirmed that the model with the last 21 samples might perform significantly better. Input features pre-processing by cascaded inception architecture was fundamental to capture the complex dynamic interaction between environmental data and leakage current and significantly improved the model performance. CNN based on inception architecture performed much better, achieving an average R2 of 0.94 ±0.03. The proposed model could be used to predict leakage current in both porcelain insulators with or without coatings and silicone composite insulators. Our results pave the way for creating an on-line pre-warning system adapted to individual installations, can anticipate the negative consequences of weather and/or pollution deposits and is useful for designing a strategic high-voltage electrical insulator preventive maintenance plan for preventing contamination flashover and thus increase power grid reliability and resilience. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness, Spain, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) . es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Applications of Artificial Intelligence es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Convolutional neural network es_ES
dc.subject Insulator leakage current prediction es_ES
dc.subject Inception architecture es_ES
dc.subject Conditional Granger causality es_ES
dc.subject Contamination flashover es_ES
dc.subject Support Vector Regression es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Inception 1D-convolutional neural network for accurate prediction of electrical insulator leakage current from environmental data during its normal operation using long-term recording es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engappai.2022.105799 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094449-A-I00/ES/ELECTROHISTEROGRAFIA PARA LA MEJORA EN LA TOMA DE DECISIONES EN SITUACIONES DE RIESGO EN OBSTETRICIA: PARTO PREMATURO E INDUCCION DEL PARTO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Bueno Barrachina, JM.; Ye Lin, Y.; Nieto Del-Amor, F.; Fuster Roig, VL. (2023). Inception 1D-convolutional neural network for accurate prediction of electrical insulator leakage current from environmental data during its normal operation using long-term recording. Engineering Applications of Artificial Intelligence. 119. https://doi.org/10.1016/j.engappai.2022.105799 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engappai.2022.105799 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 119 es_ES
dc.relation.pasarela S\482437 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem