Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casa, F. | es_ES |
dc.contributor.author | Gonzalez, C. | es_ES |
dc.contributor.author | Thalhammer, M. | es_ES |
dc.date.accessioned | 2024-04-11T11:58:33Z | |
dc.date.available | 2024-04-11T11:58:33Z | |
dc.date.issued | 2024-02 | es_ES |
dc.identifier.issn | 0010-4655 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203423 | |
dc.description.abstract | [EN] The present work is concerned with the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. The considered partial differential equations of Schrodinger and parabolic type comprise the Laplacian, a potential acting as multiplication operator, and a cubic nonlinearity. Moreover, an invariance principle is deduced that has a significant impact on the efficient realisation of the resulting modified operator splitting methods for the Schrodinger case. Numerical illustrations for the time-dependent Gross-Pitaevskii equation in the physically most relevant case of three space dimensions and for its parabolic counterpart related to ground state and excited state computations confirm the benefits of the proposed fourth-order modified operator splitting method in comparison with standard splitting methods. The presented results are novel and of particular interest from both, a theoretical perspective to inspire future investigations of modified operator splitting methods for other classes of nonlinear evolution equations and a practical perspective to advance the reliable and efficient simulation of Gross-Pitaevskii systems in real and imaginary time. | es_ES |
dc.description.sponsorship | The authors dedicate this work to ARIEH ISERLES due to his seminal contributions in the area of numerical analysis and geometric numerical integration. The authors are grateful to the two anonymous reviewers for their careful reading of the manuscript and valuable comments. This work has been supported by Ministerio de Ciencia e Innovación (Spain) through projects PID2019-104927GB-C21 and PID2019- 104927GB-C22, MCIN/AEI/10.13039/501100011033, ERDF (A way of making Europe). Sergio Blanes and Fernando Casas acknowledge the support of the Conselleria d'Innovació, Universitats, Ciència i Societat Digital from the Generalitat Valenciana (Spain) through project CIAICO/2021/180. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Physics Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear evolution equations | es_ES |
dc.subject | Parabolic problems | es_ES |
dc.subject | Schrodinger equations | es_ES |
dc.subject | Gross-Pitaevskii systems | es_ES |
dc.subject | Geometric time integration | es_ES |
dc.subject | Operator splitting methods | es_ES |
dc.subject | Fourier spectral method | es_ES |
dc.subject | Convergence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cpc.2023.109007 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C22/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO II/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIAICO%2F2021%2F180/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Blanes Zamora, S.; Casa, F.; Gonzalez, C.; Thalhammer, M. (2024). Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type. Computer Physics Communications. 295. https://doi.org/10.1016/j.cpc.2023.109007 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cpc.2023.109007 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 295 | es_ES |
dc.relation.pasarela | S\509254 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |