- -

Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casa, F. es_ES
dc.contributor.author Gonzalez, C. es_ES
dc.contributor.author Thalhammer, M. es_ES
dc.date.accessioned 2024-04-11T11:58:33Z
dc.date.available 2024-04-11T11:58:33Z
dc.date.issued 2024-02 es_ES
dc.identifier.issn 0010-4655 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203423
dc.description.abstract [EN] The present work is concerned with the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. The considered partial differential equations of Schrodinger and parabolic type comprise the Laplacian, a potential acting as multiplication operator, and a cubic nonlinearity. Moreover, an invariance principle is deduced that has a significant impact on the efficient realisation of the resulting modified operator splitting methods for the Schrodinger case. Numerical illustrations for the time-dependent Gross-Pitaevskii equation in the physically most relevant case of three space dimensions and for its parabolic counterpart related to ground state and excited state computations confirm the benefits of the proposed fourth-order modified operator splitting method in comparison with standard splitting methods. The presented results are novel and of particular interest from both, a theoretical perspective to inspire future investigations of modified operator splitting methods for other classes of nonlinear evolution equations and a practical perspective to advance the reliable and efficient simulation of Gross-Pitaevskii systems in real and imaginary time. es_ES
dc.description.sponsorship The authors dedicate this work to ARIEH ISERLES due to his seminal contributions in the area of numerical analysis and geometric numerical integration. The authors are grateful to the two anonymous reviewers for their careful reading of the manuscript and valuable comments. This work has been supported by Ministerio de Ciencia e Innovación (Spain) through projects PID2019-104927GB-C21 and PID2019- 104927GB-C22, MCIN/AEI/10.13039/501100011033, ERDF (A way of making Europe). Sergio Blanes and Fernando Casas acknowledge the support of the Conselleria d'Innovació, Universitats, Ciència i Societat Digital from the Generalitat Valenciana (Spain) through project CIAICO/2021/180. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Physics Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear evolution equations es_ES
dc.subject Parabolic problems es_ES
dc.subject Schrodinger equations es_ES
dc.subject Gross-Pitaevskii systems es_ES
dc.subject Geometric time integration es_ES
dc.subject Operator splitting methods es_ES
dc.subject Fourier spectral method es_ES
dc.subject Convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cpc.2023.109007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C22/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO II/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIAICO%2F2021%2F180/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casa, F.; Gonzalez, C.; Thalhammer, M. (2024). Generalisation of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schrödinger type. Computer Physics Communications. 295. https://doi.org/10.1016/j.cpc.2023.109007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cpc.2023.109007 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 295 es_ES
dc.relation.pasarela S\509254 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem