- -

Recurrence properties for linear dynamical systems: An approach via invariant measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recurrence properties for linear dynamical systems: An approach via invariant measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Grivaux, Sophie es_ES
dc.contributor.author López-Martínez, Antoni es_ES
dc.date.accessioned 2024-04-11T11:58:55Z
dc.date.available 2024-04-11T11:58:55Z
dc.date.issued 2023-01 es_ES
dc.identifier.issn 0021-7824 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203435
dc.description.abstract [EN] We study different pointwise recurrence notions for linear dynamical systems from the Ergodic Theory point of view. We show that from any reiteratively recurrent vector x0, for an adjoint operator T on a separable dual Banach space X, one can construct a T-invariant probability measure which contains x0 in its support. This allows us to establish some equivalences, for these operators, between some strong pointwise recurrence notions which in general are completely distinguished. In particular, we show that (in our framework) reiterative recurrence coincides with frequent recurrence; for complex Hilbert spaces uniform recurrence coincides with the property of having a spanning family of unimodular eigenvectors; and the same happens for power-bounded operators on complex reflexive Banach spaces. These (surprising) properties are easily generalized to product and inverse dynamical systems, which implies some relations with the respective hypercyclicity notions. Finally we study how typical is an operator with a non-zero reiteratively recurrent vector in the sense of Baire category.(c) 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). es_ES
dc.description.sponsorship The first author was supported by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-11-LABX-0007-01) . The second author was partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades, grant FPU2019/04094, and by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-I00. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal de Mathématiques Pures et Appliquées es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Linear dynamics es_ES
dc.subject Recurrence es_ES
dc.subject Invariant measures es_ES
dc.subject Frequently recurrent operators es_ES
dc.subject Unimodular eigenvectors es_ES
dc.subject Uniformly recurrent operators es_ES
dc.title Recurrence properties for linear dynamical systems: An approach via invariant measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.matpur.2022.11.011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0007/FR/Centre Européen pour les Mathématiques, la Physique et leurs Interactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-17-CE40-0021/FR/Frontiers of operator theory/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU19%2F04094//AYUDA PREDOCTORAL FPU-LOPEZ MARTINEZ. PROYECTO: TEORÍA COMBINATORIA DE NÚMEROS, RECURRENCIA DE OPERADORES Y DINÁMICA LINEAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Grivaux, S.; López-Martínez, A. (2023). Recurrence properties for linear dynamical systems: An approach via invariant measures. Journal de Mathématiques Pures et Appliquées. 169:155-188. https://doi.org/10.1016/j.matpur.2022.11.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.matpur.2022.11.011 es_ES
dc.description.upvformatpinicio 155 es_ES
dc.description.upvformatpfin 188 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 169 es_ES
dc.relation.pasarela S\481084 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem