Mostrar el registro sencillo del ítem
dc.contributor.author | Grivaux, Sophie | es_ES |
dc.contributor.author | López-Martínez, Antoni | es_ES |
dc.date.accessioned | 2024-04-11T11:58:55Z | |
dc.date.available | 2024-04-11T11:58:55Z | |
dc.date.issued | 2023-01 | es_ES |
dc.identifier.issn | 0021-7824 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203435 | |
dc.description.abstract | [EN] We study different pointwise recurrence notions for linear dynamical systems from the Ergodic Theory point of view. We show that from any reiteratively recurrent vector x0, for an adjoint operator T on a separable dual Banach space X, one can construct a T-invariant probability measure which contains x0 in its support. This allows us to establish some equivalences, for these operators, between some strong pointwise recurrence notions which in general are completely distinguished. In particular, we show that (in our framework) reiterative recurrence coincides with frequent recurrence; for complex Hilbert spaces uniform recurrence coincides with the property of having a spanning family of unimodular eigenvectors; and the same happens for power-bounded operators on complex reflexive Banach spaces. These (surprising) properties are easily generalized to product and inverse dynamical systems, which implies some relations with the respective hypercyclicity notions. Finally we study how typical is an operator with a non-zero reiteratively recurrent vector in the sense of Baire category.(c) 2022 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.description.sponsorship | The first author was supported by the project FRONT of the French National Research Agency (grant ANR-17-CE40-0021) and by the Labex CEMPI (ANR-11-LABX-0007-01) . The second author was partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades, grant FPU2019/04094, and by MCIN/AEI/10.13039/501100011033, Project PID2019-105011GB-I00. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal de Mathématiques Pures et Appliquées | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Linear dynamics | es_ES |
dc.subject | Recurrence | es_ES |
dc.subject | Invariant measures | es_ES |
dc.subject | Frequently recurrent operators | es_ES |
dc.subject | Unimodular eigenvectors | es_ES |
dc.subject | Uniformly recurrent operators | es_ES |
dc.title | Recurrence properties for linear dynamical systems: An approach via invariant measures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.matpur.2022.11.011 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105011GB-I00/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0007/FR/Centre Européen pour les Mathématiques, la Physique et leurs Interactions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-17-CE40-0021/FR/Frontiers of operator theory/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU19%2F04094//AYUDA PREDOCTORAL FPU-LOPEZ MARTINEZ. PROYECTO: TEORÍA COMBINATORIA DE NÚMEROS, RECURRENCIA DE OPERADORES Y DINÁMICA LINEAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Grivaux, S.; López-Martínez, A. (2023). Recurrence properties for linear dynamical systems: An approach via invariant measures. Journal de Mathématiques Pures et Appliquées. 169:155-188. https://doi.org/10.1016/j.matpur.2022.11.011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.matpur.2022.11.011 | es_ES |
dc.description.upvformatpinicio | 155 | es_ES |
dc.description.upvformatpfin | 188 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 169 | es_ES |
dc.relation.pasarela | S\481084 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | MINISTERIO DE UNIVERSIDADES E INVESTIGACION | es_ES |