Mostrar el registro sencillo del ítem
dc.contributor.author | Goti, Aitor | es_ES |
dc.contributor.author | Oyarbide-Zubillaga, Aitor | es_ES |
dc.contributor.author | Alberdi, Elisabete | es_ES |
dc.contributor.author | Sánchez Galdón, Ana Isabel | es_ES |
dc.contributor.author | Garcia-Bringas, Pablo | es_ES |
dc.date.accessioned | 2024-04-12T18:04:28Z | |
dc.date.available | 2024-04-12T18:04:28Z | |
dc.date.issued | 2019-08-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203457 | |
dc.description.abstract | [EN] Maintenance has always been a key activity in the manufacturing industry because of its economic consequences. Nowadays, its importance is increasing thanks to the Industry 4.0 or fourth industrial revolution. There are more and more complex systems to maintain, and maintenance management must gain efficiency and effectiveness in order to keep all these devices in proper conditions. Within maintenance, Condition-Based Maintenance (CBM) programs can provide significant advantages, even though often these programs are complex to manage and understand. For this reason, several research papers propose approaches that are as simple as possible and can be understood by users and modified by experts. In this context, this paper focuses on CBM optimization in an industrial environment, with the objective of determining the optimal values of preventive intervention limits for equipment under corrective and preventive maintenance cost criteria. In this work, a cost-benefit mathematical model is developed. It considers the evolution in quality and production speed, along with condition based, corrective and preventive maintenance. The cost-benefit optimization is performed using a Multi-Objective Evolutionary Algorithm. Both the model and the optimization approach are applied to an industrial case. | es_ES |
dc.description.sponsorship | This research was funded by the HAZITEK call of the Basque Government, project acronym HORDAGO. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation | info:eu-repo/grantAgreement/Eusko Jaurlaritza/HAZITEK/ZE-2019%2F00008/ES/HORNOS ROBUSTOS Y EFICIENTES CON DISPONIBILIDAD Y MANTENIMIENTO AVANZADOS PARA LA GESTIÓN OPTIMIZADA DE PROCESOS | |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Condition-based maintenance | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Multi-objective evolutionary algorithms | es_ES |
dc.subject | Production systems | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Optimal Maintenance Thresholds to Perform Preventive Actions by Using Multi-Objective Evolutionary Algorithms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app9153068 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Goti, A.; Oyarbide-Zubillaga, A.; Alberdi, E.; Sánchez Galdón, AI.; Garcia-Bringas, P. (2019). Optimal Maintenance Thresholds to Perform Preventive Actions by Using Multi-Objective Evolutionary Algorithms. Applied Sciences. 9(15). https://doi.org/10.3390/app9153068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app9153068 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\407526 | es_ES |
dc.contributor.funder | Eusko Jaurlaritza | es_ES |