- -

Improving Newton-Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving Newton-Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Maimo, Javier G. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, María P. es_ES
dc.date.accessioned 2024-04-12T18:04:33Z
dc.date.available 2024-04-12T18:04:33Z
dc.date.issued 2023-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203459
dc.description.abstract [EN] Some iterative schemes with memory were designed for approximating the inverse of a nonsingular square complex matrix and the Moore-Penrose inverse of a singular square matrix or an arbitrary m x n complex matrix. A Kurchatov-type scheme and Steffensen's method with memory were developed for estimating these types of inverses, improving, in the second case, the order of convergence of the Newton-Schulz scheme. The convergence and its order were studied in the four cases, and their stability was checked as discrete dynamical systems. With large matrices, some numerical examples are presented to confirm the theoretical results and to compare the results obtained with the proposed methods with those provided by other known ones. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear matrix equations es_ES
dc.subject Inverse and pseudo-inverse matrices es_ES
dc.subject Iterative procedure es_ES
dc.subject Methods with memory es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Improving Newton-Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math11143161 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Maimo, JG.; Torregrosa Sánchez, JR.; Vassileva, MP. (2023). Improving Newton-Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory. Mathematics. 11(14). https://doi.org/10.3390/math11143161 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math11143161 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 14 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\513177 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem