Mostrar el registro sencillo del ítem
dc.contributor.author | Ahsini, Yusef | es_ES |
dc.contributor.author | Díaz-Masa, Pablo | es_ES |
dc.contributor.author | Inglés, Belén | es_ES |
dc.contributor.author | Rubio, Ana | es_ES |
dc.contributor.author | Martínez, Alba | es_ES |
dc.contributor.author | Magraner, Aina | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.date.accessioned | 2024-04-12T18:04:34Z | |
dc.date.available | 2024-04-12T18:04:34Z | |
dc.date.issued | 2023-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203460 | |
dc.description.abstract | [EN] With the increasing demand for online shopping and home delivery services, optimizing the routing of electric delivery vehicles in urban areas is crucial to reduce environmental pollution and improve operational efficiency. To address this opportunity, we optimize the Steiner Traveling Salesman Problem (STSP) for electric vehicles (EVs) in urban areas by combining city graphs with topographic and traffic information. The STSP is a variant of the traditional Traveling Salesman Problem (TSP) where it is not mandatory to visit all the nodes present in the graph. We train an artificial neural network (ANN) model to estimate electric consumption between nodes in the route using synthetic data generated with historical traffic simulation and topographical data. This allows us to generate smaller-weighted graphs that transform the problem from an STSP to a normal TSP where the 2-opt optimization algorithm is used to solve it with a Nearest Neighbor (NN) initialization. Compared to the approach of optimizing routes based on distance, our proposed algorithm offers a fast solution to the STSP for EVs (EV-STSP) with routes that consume 17.34% less energy for the test instances generated. | es_ES |
dc.description.sponsorship | J.A.C is supported by grant PID2022-138860NB-I00 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by "ERDF A way of making Europe", by the "European Union" or by the "European Union NextGenerationEU/PRTR" | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electric vehicle routing | es_ES |
dc.subject | Steiner Traveling Salesman Problem | es_ES |
dc.subject | Digital elevation model | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Node filtering | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The Electric Vehicle Traveling Salesman Problem on Digital Elevation Models for Traffic-Aware Urban Logistics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a16090402 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ahsini, Y.; Díaz-Masa, P.; Inglés, B.; Rubio, A.; Martínez, A.; Magraner, A.; Conejero, JA. (2023). The Electric Vehicle Traveling Salesman Problem on Digital Elevation Models for Traffic-Aware Urban Logistics. Algorithms. 16(9):1-13. https://doi.org/10.3390/a16090402 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/a16090402 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1999-4893 | es_ES |
dc.relation.pasarela | S\513200 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |