Mostrar el registro sencillo del ítem
dc.contributor.author | Periñán-Pascual, Carlos | es_ES |
dc.date.accessioned | 2024-04-15T18:09:45Z | |
dc.date.available | 2024-04-15T18:09:45Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.issn | 1570-5838 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203519 | |
dc.description.abstract | [EN] Social-media platforms have become a global phenomenon of communication, where users publish content in text, images, video, audio or a combination of them to convey opinions, report facts that are happening or show current situations of interest. Smart-city applications can benefit from social media and digital participatory platforms when citizens become active social sensors of the problems that occur in their communities. Indeed, systems that analyse and interpret user-generated content can extract actionable information from the digital world to improve citizens' quality of life. This article aims to model the knowledge required for automatic problem detection to reproduce citizens' awareness of problems from the analysis of text-based user-generated content items. Therefore, this research focuses on two primary goals. On the one hand, we present the underpinnings of the ontological model that categorises the types of problems affecting citizens' quality of life in society. In this regard, this study contributes significantly to developing an ontology based on the social-sensing paradigm to support the advance of smart societies. On the other hand, we describe the architecture of the text-processing module that relies on such an ontology to perform problem detection, which involves the tasks of topic categorisation and keyword recognition. | es_ES |
dc.description.sponsorship | This article was supported under grant PID2020-112827GB-I00 funded by MCIN/AEI/10.13039/501100011033, and under grant number 101017861 [project SMARTLAGOON] by the European Union's Horizon 2020 research and innovation program. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation.ispartof | Applied Ontology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | User-generated content | es_ES |
dc.subject | Problem detection | es_ES |
dc.subject | Text classification | es_ES |
dc.subject | Keyword recognition | es_ES |
dc.subject | Ontology | es_ES |
dc.subject.classification | FILOLOGIA INGLESA | es_ES |
dc.title | From Smart City to Smart Society: A quality-of-life ontological model for problem detection from user-generated content | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3233/AO-230281 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112827GB-I00/ES/SISTEMA INTELIGENTE MULTIMODAL BASADO EN CROWDSENSING PARA UN SERVICIO DE PREDICCION DE PROBLEMAS SOCIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101017861/EU/Innovative modelling approaches for predicting Socio-environMentAl evolution in highly anthRopized coasTal LAGOONs/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Periñán-Pascual, C. (2023). From Smart City to Smart Society: A quality-of-life ontological model for problem detection from user-generated content. Applied Ontology. 18(3):263-306. https://doi.org/10.3233/AO-230281 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3233/AO-230281 | es_ES |
dc.description.upvformatpinicio | 263 | es_ES |
dc.description.upvformatpfin | 306 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\510161 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |