Mostrar el registro sencillo del ítem
dc.contributor.author | Jaramillo-Hernández, Juan Felipe | es_ES |
dc.contributor.author | Julian, Vicente | es_ES |
dc.contributor.author | Marco-Detchart, Cédric | es_ES |
dc.contributor.author | Rincón, Jaime Andrés | es_ES |
dc.date.accessioned | 2024-04-15T18:09:52Z | |
dc.date.available | 2024-04-15T18:09:52Z | |
dc.date.issued | 2024-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203525 | |
dc.description.abstract | [EN] In the context of recent technological advancements driven by distributed work and open-source resources, computer vision stands out as an innovative force, transforming how machines interact with and comprehend the visual world around us. This work conceives, designs, implements, and operates a computer vision and artificial intelligence method for object detection with integrated depth estimation. With applications ranging from autonomous fruit-harvesting systems to phenotyping tasks, the proposed Depth Object Detector (DOD) is trained and evaluated using the Microsoft Common Objects in Context dataset and the MinneApple dataset for object and fruit detection, respectively. The DOD is benchmarked against current state-of-the-art models. The results demonstrate the proposed method's efficiency for operation on embedded systems, with a favorable balance between accuracy and speed, making it well suited for real-time applications on edge devices in the context of the Internet of things. | es_ES |
dc.description.sponsorship | This work was partially supported with grant PID2021-123673OB-C31, TED2021-131295BC32 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe , PROMETEO grant CIPROM/2021/077 from the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital Generalitat Valenciana and Early Research Project grant PAID-06-23 by the Vice Rectorate Office for Research from Universitat Politècnica de València (UPV). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Object detection | es_ES |
dc.subject | Depth estimation | es_ES |
dc.subject | Precision agriculture | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Application of Machine Vision Techniques in Low-Cost Devices to Improve Efficiency in Precision Farming | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s24030937 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123673OB-C31/ES/SERVICIOS INTELIGENTES COORDINADOS PARA AREAS INTELIGENTES ADAPTATIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-23/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F077/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Jaramillo-Hernández, JF.; Julian, V.; Marco-Detchart, C.; Rincón, JA. (2024). Application of Machine Vision Techniques in Low-Cost Devices to Improve Efficiency in Precision Farming. Sensors. 24(3). https://doi.org/10.3390/s24030937 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s24030937 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 38339654 | es_ES |
dc.identifier.pmcid | PMC10857338 | es_ES |
dc.relation.pasarela | S\513665 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |