Launet, LM.; Wang, Y.; Colomer, A.; Igual García, J.; Pulgarín-Ospina, CC.; Koulouzis, S.; Bianchi, R.... (2023). Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Applied Sciences. 13(2). https://doi.org/10.3390/app13020919
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/203557
Título:
|
Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions
|
Autor:
|
Launet, Laetitia Mariana
Wang, Yuandou
Colomer, Adrián
Igual García, Jorge
Pulgarín-Ospina, Cristian Camilo
Koulouzis, Spiros
Bianchi, Riccardo
Mosquera-Zamudio, Andrés
Monteagudo, Carlos
Naranjo Ornedo, Valeriana
Zhao, Zhiming
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
|
Fecha difusión:
|
|
Resumen:
|
[EN] Deep learning-based algorithms have led to tremendous progress over the last years, but they face a bottleneck as their optimal development highly relies on access to large datasets. To mitigate this limitation, ...[+]
[EN] Deep learning-based algorithms have led to tremendous progress over the last years, but they face a bottleneck as their optimal development highly relies on access to large datasets. To mitigate this limitation, cross-silo federated learning has emerged as a way to train collaborative models among multiple institutions without having to share the raw data used for model training. However, although artificial intelligence experts have the expertise to develop state-of-the-art models and actively share their code through notebook environments, implementing a federated learning system in real-world applications entails significant engineering and deployment efforts. To reduce the complexity of federation setups and bridge the gap between federated learning and notebook users, this paper introduces a solution that leverages the Jupyter environment as part of the federated learning pipeline and simplifies its automation, the Notebook Federator. The feasibility of this approach is then demonstrated with a collaborative model solving a digital pathology image analysis task in which the federated model reaches an accuracy of 0.8633 on the test set, as compared to the centralized configurations for each institution obtaining 0.7881, 0.6514, and 0.8096, respectively. As a fast and reproducible tool, the proposed solution enables the deployment of a cross-country federated environment in only a few minutes.
[-]
|
Palabras clave:
|
Federated learning
,
Jupyter notebook
,
Medical image analysis
,
Collaborative models
,
Cloud environment
,
Distributed medical applications
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
Applied Sciences. (eissn:
2076-3417
)
|
DOI:
|
10.3390/app13020919
|
Editorial:
|
MDPI AG
|
Versión del editor:
|
https://doi.org/10.3390/app13020919
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105142RB-C21/ES/CARACTERIZACION DE NEOPLASIAS DE CELULAS FUSIFORMES EN IMAGENES HISTOLOGICAS/
info:eu-repo/grantAgreement/EC/H2020/824068/EU/ENVironmental Research Infrastructures building Fair services Accessible for society, Innovation and Research/
info:eu-repo/grantAgreement/EC/H2020/825134/EU/smART socIal media eCOsytstem in a blockchaiN Federated environment/
info:eu-repo/grantAgreement/EC/H2020/860627/EU/CLoud ARtificial Intelligence For pathologY/
info:eu-repo/grantAgreement/UPV//PAID-PD-22//Ayudas para potenciar la investigación postdoctoral de la UPV/
info:eu-repo/grantAgreement/GVA//INNEST%2F2021%2F321/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
[-]
|
Agradecimientos:
|
This work has been partially funded by the European Union s Horizon 2020 research and innovation programme with the project CLARIFY under Marie Sklodowska-Curie (860627), ENVRI-FAIR (824068), BlueCloud (862409), and ARTICONF ...[+]
This work has been partially funded by the European Union s Horizon 2020 research and innovation programme with the project CLARIFY under Marie Sklodowska-Curie (860627), ENVRI-FAIR (824068), BlueCloud (862409), and ARTICONF (825134). This work is also supported by LifeWatch ERIC, GVA through projects PROMETEO/2019/109 and INNEST/2021/321 (SAMUEL), and the Spanish Ministry of Economy and Competitiveness through project PID2019-105142RB-C21 (AI4SKIN). The work of Adrián Colomer has been supported by the ValgrAI Valencian Graduate School and Research Network for Artificial Intelligence & Generalitat Valenciana and Universitat Politècnica de València (PAID-PD-22).
[-]
|
Tipo:
|
Artículo
|