- -

Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escribano, Pilar es_ES
dc.contributor.author Ródenas, Juan es_ES
dc.contributor.author García, Manuel es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Gracia-Baena, Juan M. es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2024-04-17T18:14:19Z
dc.date.available 2024-04-17T18:14:19Z
dc.date.issued 2024-01 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203560
dc.description.abstract [EN] Atrial fibrillation (AF) is a prevalent cardiac arrhythmia often treated concomitantly with other cardiac interventions through the Cox-Maze procedure. This highly invasive intervention is still linked to a long-term recurrence rate of approximately 35% in permanent AF patients. The aim of this study is to preoperatively predict long-term AF recurrence post-surgery through the analysis of atrial activity (AA) organization from non-invasive electrocardiographic (ECG) recordings. A dataset comprising ECGs from 53 patients with permanent AF who had undergone Cox-Maze concomitant surgery was analyzed. The AA was extracted from the lead V1 of these recordings and then characterized using novel predictors, such as the mean and standard deviation of the relative wavelet energy (RWEm and RWEs) across different scales, and an entropy-based metric that computes the stationary wavelet entropy variability (SWEnV). The individual predictors exhibited limited predictive capabilities to anticipate the outcome of the procedure, with the SWEnV yielding a classification accuracy (Acc) of 68.07%. However, the assessment of the RWEs for the seventh scale (RWEs7), which encompassed frequencies associated with the AA, stood out as the most promising individual predictor, with sensitivity (Se) and specificity (Sp) values of 80.83% and 67.09%, respectively, and an Acc of almost 75%. Diverse multivariate decision tree-based models were constructed for prediction, giving priority to simplicity in the interpretation of the forecasting methodology. In fact, the combination of the SWEnV and RWEs7 consistently outperformed the individual predictors and excelled in predicting post-surgery outcomes one year after the Cox-Maze procedure, with Se, Sp, and Acc values of approximately 80%, thus surpassing the results of previous studies based on anatomical predictors associated with atrial function or clinical data. These findings emphasize the crucial role of preoperative patient-specific ECG signal analysis in tailoring post-surgical care, enhancing clinical decision making, and improving long-term clinical outcomes. es_ES
dc.description.sponsorship This research has received financial support from public grants PID2021-123804OB-I00, PID2021- 00X128525-IV0, and TED2021-130935B-I00 of the Spanish Government, 10.13039/501100011033, in conjunction with the European Regional Development Fund (EU), SBPLY/21/180501/000186, from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. Pilar Escribano holds the 2020-PREDUCLM-15540 scholarship co-financed by the European Social Fund (ESF) operating program 2014 2020 of Castilla-La Mancha. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Cox-Maze es_ES
dc.subject Surgical ablation es_ES
dc.subject Cardiac surgery es_ES
dc.subject Entropy es_ES
dc.subject Wavelet es_ES
dc.subject Long-term prediction es_ES
dc.subject Electrocardiogram analysis es_ES
dc.subject Decision tree models es_ES
dc.subject Signal processing es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e26010028 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128525OB-I00/ES/DETECCION PRECOZ DE ARRITMIAS CARDIACAS MEDIANTE INTELIGENCIA ARTIFICIAL PARA MEJORAR LA PREVENCION SECUNDARIA DEL ICTUS CRIPTOGENICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCLM//2020-PREDUCLM-15540/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Escribano, P.; Ródenas, J.; García, M.; Hornero, F.; Gracia-Baena, JM.; Alcaraz, R.; Rieta, JJ. (2024). Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis. Entropy. 26(1). https://doi.org/10.3390/e26010028 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e26010028 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 38248154 es_ES
dc.relation.pasarela S\513762 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universidad de Castilla-La Mancha es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem