Mostrar el registro sencillo del ítem
dc.contributor.author | Escribano, Pilar | es_ES |
dc.contributor.author | Ródenas, Juan | es_ES |
dc.contributor.author | García, Manuel | es_ES |
dc.contributor.author | Hornero, Fernando | es_ES |
dc.contributor.author | Gracia-Baena, Juan M. | es_ES |
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Rieta, J J | es_ES |
dc.date.accessioned | 2024-04-17T18:14:19Z | |
dc.date.available | 2024-04-17T18:14:19Z | |
dc.date.issued | 2024-01 | es_ES |
dc.identifier.issn | 1099-4300 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203560 | |
dc.description.abstract | [EN] Atrial fibrillation (AF) is a prevalent cardiac arrhythmia often treated concomitantly with other cardiac interventions through the Cox-Maze procedure. This highly invasive intervention is still linked to a long-term recurrence rate of approximately 35% in permanent AF patients. The aim of this study is to preoperatively predict long-term AF recurrence post-surgery through the analysis of atrial activity (AA) organization from non-invasive electrocardiographic (ECG) recordings. A dataset comprising ECGs from 53 patients with permanent AF who had undergone Cox-Maze concomitant surgery was analyzed. The AA was extracted from the lead V1 of these recordings and then characterized using novel predictors, such as the mean and standard deviation of the relative wavelet energy (RWEm and RWEs) across different scales, and an entropy-based metric that computes the stationary wavelet entropy variability (SWEnV). The individual predictors exhibited limited predictive capabilities to anticipate the outcome of the procedure, with the SWEnV yielding a classification accuracy (Acc) of 68.07%. However, the assessment of the RWEs for the seventh scale (RWEs7), which encompassed frequencies associated with the AA, stood out as the most promising individual predictor, with sensitivity (Se) and specificity (Sp) values of 80.83% and 67.09%, respectively, and an Acc of almost 75%. Diverse multivariate decision tree-based models were constructed for prediction, giving priority to simplicity in the interpretation of the forecasting methodology. In fact, the combination of the SWEnV and RWEs7 consistently outperformed the individual predictors and excelled in predicting post-surgery outcomes one year after the Cox-Maze procedure, with Se, Sp, and Acc values of approximately 80%, thus surpassing the results of previous studies based on anatomical predictors associated with atrial function or clinical data. These findings emphasize the crucial role of preoperative patient-specific ECG signal analysis in tailoring post-surgical care, enhancing clinical decision making, and improving long-term clinical outcomes. | es_ES |
dc.description.sponsorship | This research has received financial support from public grants PID2021-123804OB-I00, PID2021- 00X128525-IV0, and TED2021-130935B-I00 of the Spanish Government, 10.13039/501100011033, in conjunction with the European Regional Development Fund (EU), SBPLY/21/180501/000186, from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. Pilar Escribano holds the 2020-PREDUCLM-15540 scholarship co-financed by the European Social Fund (ESF) operating program 2014 2020 of Castilla-La Mancha. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Entropy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Cox-Maze | es_ES |
dc.subject | Surgical ablation | es_ES |
dc.subject | Cardiac surgery | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Wavelet | es_ES |
dc.subject | Long-term prediction | es_ES |
dc.subject | Electrocardiogram analysis | es_ES |
dc.subject | Decision tree models | es_ES |
dc.subject | Signal processing | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/e26010028 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128525OB-I00/ES/DETECCION PRECOZ DE ARRITMIAS CARDIACAS MEDIANTE INTELIGENCIA ARTIFICIAL PARA MEJORAR LA PREVENCION SECUNDARIA DEL ICTUS CRIPTOGENICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UCLM//2020-PREDUCLM-15540/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Escribano, P.; Ródenas, J.; García, M.; Hornero, F.; Gracia-Baena, JM.; Alcaraz, R.; Rieta, JJ. (2024). Novel Entropy-Based Metrics for Long-Term Atrial Fibrillation Recurrence Prediction Following Surgical Ablation: Insights from Preoperative Electrocardiographic Analysis. Entropy. 26(1). https://doi.org/10.3390/e26010028 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/e26010028 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 38248154 | es_ES |
dc.relation.pasarela | S\513762 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universidad de Castilla-La Mancha | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |