- -

A novel approach to upgrade infrared spectroscopy calibrations for nutritional contents in fresh grapevine organs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A novel approach to upgrade infrared spectroscopy calibrations for nutritional contents in fresh grapevine organs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author van Wyngaard, Elizma es_ES
dc.contributor.author Blancquaert, Erna es_ES
dc.contributor.author Nieuwoudt, Hélène es_ES
dc.contributor.author Aleixandre Tudo, José es_ES
dc.date.accessioned 2024-04-22T18:06:55Z
dc.date.available 2024-04-22T18:06:55Z
dc.date.issued 2023-08 es_ES
dc.identifier.issn 1537-5110 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203676
dc.description.abstract [EN] Infrared spectroscopy is widely used in viticulture. Spectroscopy correlates spectral properties with reference data to obtain calibrations later used to predict the analyte content in new samples with a single spectral measurement. However, the main limitation lies in generating the reference data required to build robust prediction calibrations. This study proposes a data generation strategy to obtain reference data for larger spectral datasets. A reduced sample set was used to develop initial calibrations. These initial cali-brations were subsequently applied to predict the reference data in larger spectral datasets. Calibrations for nitrogen, carbon, and hydrogen content were then attempted using the larger generated datasets. The initial nitrogen calibrations per organ showed coefficients of determination in validation (R2val) between 80.08 and 89.93%. The root mean square errors of prediction (RMSEP) ranged from 0.10 to 0.18% dry matter, and the residual predictive deviations in validation (RPD) were between 2.27 and 3.19. The larger predicted datasets showed improved prediction accuracy with coefficients of determination in validation values above 91.79%, root mean square errors of prediction below 0.14% dry matter, and residual predictive deviations in validation above 3.49. The carbon calibrations showed, on average, a 20% increase in the coefficient of determination in validation decreased root mean square errors of prediction and increased residual predictive deviations in validation. The hydrogen calibrations showed a similar increase in prediction accuracy. The results showed the suitability of using reduced sample sets to generate the reference data of larger datasets capable of yielding more accurate prediction calibrations.& COPY; 2023 IAgrE. Published by Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship The authors gratefully acknowledge the Oppenheimer Me- morial Trust, for the local scholarship (OMT Award Ref. 21579/02) awarded to Ms Elizma van Wyngaard. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Biosystems Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Viticulture es_ES
dc.subject Berries es_ES
dc.subject Shoots es_ES
dc.subject Leaves es_ES
dc.subject Nitrogen es_ES
dc.subject Carbon es_ES
dc.title A novel approach to upgrade infrared spectroscopy calibrations for nutritional contents in fresh grapevine organs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.biosystemseng.2023.07.008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OMT//21579%2F01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Van Wyngaard, E.; Blancquaert, E.; Nieuwoudt, H.; Aleixandre Tudo, J. (2023). A novel approach to upgrade infrared spectroscopy calibrations for nutritional contents in fresh grapevine organs. Biosystems Engineering. 232:141-154. https://doi.org/10.1016/j.biosystemseng.2023.07.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.biosystemseng.2023.07.008 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 154 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 232 es_ES
dc.relation.pasarela S\512405 es_ES
dc.contributor.funder Ernest Oppenheimer Memorial Trust es_ES
dc.contributor.funder Universitat Politècnica de València


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem