- -

An optimal eighth order derivative free multiple root finding scheme and its dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An optimal eighth order derivative free multiple root finding scheme and its dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zafar, Fiza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Rizvi, Dua-E-Zahra es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2024-04-22T18:06:56Z
dc.date.available 2024-04-22T18:06:56Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203677
dc.description.abstract [EN] The problem of solving a nonlinear equation is considered to be one of the significant domain. Motivated by the requirement to achieve more optimal derivative-free schemes, we present an eighth-order optimal derivative-free method to find multiple zeros of the nonlinear equation by weight function approach in this paper. This family of methods requires four functional evaluations. The technique is based on a three-step method including the first step as a Traub-Steffensen iteration and the next two as Traub-Steffensen-like iterations. Our proposed scheme is optimal in the sense of Kung-Traub conjecture. The applicability of the proposed schemes is shown by using different nonlinear functions that verify the robust convergence behavior. Convergence of the presented family of methods is demonstrated through the graphical regions by drawing basins of attraction. es_ES
dc.description.sponsorship This research was partially supported by Grant PGC2018-095896-B-C22 funded by MCIN/AEI/31000.13039/ "ERDF A way to making Europe", European Union. The authors would like to thank the anonymous reviewers for their help and suggestions, that have improved the final version of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Mathematical Sciences es_ES
dc.relation.ispartof AIMS Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Nonlinear equations es_ES
dc.subject Multiple roots es_ES
dc.subject Derivative -free methods es_ES
dc.subject Basins of attraction es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An optimal eighth order derivative free multiple root finding scheme and its dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3934/math.2023427 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Zafar, F.; Cordero Barbero, A.; Rizvi, D.; Torregrosa Sánchez, JR. (2023). An optimal eighth order derivative free multiple root finding scheme and its dynamics. AIMS Mathematics. 8(4):8478-8503. https://doi.org/10.3934/math.2023427 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3934/math.2023427 es_ES
dc.description.upvformatpinicio 8478 es_ES
dc.description.upvformatpfin 8503 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2473-6988 es_ES
dc.relation.pasarela S\513171 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem