Mostrar el registro sencillo del ítem
dc.contributor.author | Zafar, Fiza | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Rizvi, Dua-E-Zahra | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2024-04-22T18:06:56Z | |
dc.date.available | 2024-04-22T18:06:56Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203677 | |
dc.description.abstract | [EN] The problem of solving a nonlinear equation is considered to be one of the significant domain. Motivated by the requirement to achieve more optimal derivative-free schemes, we present an eighth-order optimal derivative-free method to find multiple zeros of the nonlinear equation by weight function approach in this paper. This family of methods requires four functional evaluations. The technique is based on a three-step method including the first step as a Traub-Steffensen iteration and the next two as Traub-Steffensen-like iterations. Our proposed scheme is optimal in the sense of Kung-Traub conjecture. The applicability of the proposed schemes is shown by using different nonlinear functions that verify the robust convergence behavior. Convergence of the presented family of methods is demonstrated through the graphical regions by drawing basins of attraction. | es_ES |
dc.description.sponsorship | This research was partially supported by Grant PGC2018-095896-B-C22 funded by MCIN/AEI/31000.13039/ "ERDF A way to making Europe", European Union. The authors would like to thank the anonymous reviewers for their help and suggestions, that have improved the final version of this manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | AIMS Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Multiple roots | es_ES |
dc.subject | Derivative -free methods | es_ES |
dc.subject | Basins of attraction | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An optimal eighth order derivative free multiple root finding scheme and its dynamics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/math.2023427 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Zafar, F.; Cordero Barbero, A.; Rizvi, D.; Torregrosa Sánchez, JR. (2023). An optimal eighth order derivative free multiple root finding scheme and its dynamics. AIMS Mathematics. 8(4):8478-8503. https://doi.org/10.3934/math.2023427 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/math.2023427 | es_ES |
dc.description.upvformatpinicio | 8478 | es_ES |
dc.description.upvformatpfin | 8503 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2473-6988 | es_ES |
dc.relation.pasarela | S\513171 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |