Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, A. | es_ES |
dc.contributor.author | Cossey, J. | es_ES |
dc.contributor.author | Madanha, S. Y. | es_ES |
dc.contributor.author | Pedraza Aguilera, María Carmen | es_ES |
dc.date.accessioned | 2024-04-24T18:06:13Z | |
dc.date.available | 2024-04-24T18:06:13Z | |
dc.date.issued | 2024-02 | es_ES |
dc.identifier.issn | 0236-5294 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203723 | |
dc.description.abstract | [EN] We say a group G = AB is the totally semipermutable product of subgroups A and B if every Sylow subgroup P of A is totally permutable with every Sylow subgroup Q of B whenever gcd(|P|,|Q|)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gcd(|P|,|Q|)=1 $$\end{document}. Products of pairwise totally semipermutable subgroups are studied in this article. Let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{U} $$\end{document} denote the class of supersoluble groups and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{D} $$\end{document} denote the formation of all groups which have an ordered Sylow tower of supersoluble type. We obtain the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-residual of the product from the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-residuals of the pairwise totally semipermutable subgroups when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} is a subgroup-closed saturated formation such that U subset of F subset of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{U}\subseteq \mathfrak{F}\subseteq \mathfrak{D} $$\end{document}. | es_ES |
dc.description.sponsorship | The third author was supported by the National Research Foundation (NRF) of South Africa under Grant Number 150857. All opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and the NRF does not accept any liability in regard thereto. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Acta Mathematica Hungarica | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Totally permutable product | es_ES |
dc.subject | Supersoluble group | es_ES |
dc.subject | Totally semipermutable product | es_ES |
dc.subject | Saturated formation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On totally semipermutable products of finite groups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10474-024-01392-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NRF//150857/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Cossey, J.; Madanha, SY.; Pedraza Aguilera, MC. (2024). On totally semipermutable products of finite groups. Acta Mathematica Hungarica. 172(1):161-169. https://doi.org/10.1007/s10474-024-01392-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10474-024-01392-4 | es_ES |
dc.description.upvformatpinicio | 161 | es_ES |
dc.description.upvformatpfin | 169 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 172 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\513768 | es_ES |
dc.contributor.funder | National Research Foundation, South Africa | es_ES |