- -

On totally semipermutable products of finite groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On totally semipermutable products of finite groups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester-Bolinches, A. es_ES
dc.contributor.author Cossey, J. es_ES
dc.contributor.author Madanha, S. Y. es_ES
dc.contributor.author Pedraza Aguilera, María Carmen es_ES
dc.date.accessioned 2024-04-24T18:06:13Z
dc.date.available 2024-04-24T18:06:13Z
dc.date.issued 2024-02 es_ES
dc.identifier.issn 0236-5294 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203723
dc.description.abstract [EN] We say a group G = AB is the totally semipermutable product of subgroups A and B if every Sylow subgroup P of A is totally permutable with every Sylow subgroup Q of B whenever gcd(|P|,|Q|)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \gcd(|P|,|Q|)=1 $$\end{document}. Products of pairwise totally semipermutable subgroups are studied in this article. Let U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{U} $$\end{document} denote the class of supersoluble groups and D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{D} $$\end{document} denote the formation of all groups which have an ordered Sylow tower of supersoluble type. We obtain the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-residual of the product from the F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document}-residuals of the pairwise totally semipermutable subgroups when F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{F} $$\end{document} is a subgroup-closed saturated formation such that U subset of F subset of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{U}\subseteq \mathfrak{F}\subseteq \mathfrak{D} $$\end{document}. es_ES
dc.description.sponsorship The third author was supported by the National Research Foundation (NRF) of South Africa under Grant Number 150857. All opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and the NRF does not accept any liability in regard thereto. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Acta Mathematica Hungarica es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Totally permutable product es_ES
dc.subject Supersoluble group es_ES
dc.subject Totally semipermutable product es_ES
dc.subject Saturated formation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On totally semipermutable products of finite groups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10474-024-01392-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//150857/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Ballester-Bolinches, A.; Cossey, J.; Madanha, SY.; Pedraza Aguilera, MC. (2024). On totally semipermutable products of finite groups. Acta Mathematica Hungarica. 172(1):161-169. https://doi.org/10.1007/s10474-024-01392-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10474-024-01392-4 es_ES
dc.description.upvformatpinicio 161 es_ES
dc.description.upvformatpfin 169 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\513768 es_ES
dc.contributor.funder National Research Foundation, South Africa es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem