Mostrar el registro sencillo del ítem
dc.contributor.author | Ballester-Bolinches, Adolfo | es_ES |
dc.contributor.author | Madanha, Sesuai Y. | es_ES |
dc.contributor.author | Shumba, Tendai M. Mudziiri | es_ES |
dc.contributor.author | Pedraza Aguilera, María Carmen | es_ES |
dc.date.accessioned | 2024-04-24T18:06:16Z | |
dc.date.available | 2024-04-24T18:06:16Z | |
dc.date.issued | 2024-01-30 | es_ES |
dc.identifier.issn | 0004-9727 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203725 | |
dc.description.abstract | [EN] A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$ . Weakly mutually permutable products were introduced by the first, second and fourth authors ['Generalised mutually permutable products and saturated formations', J. Algebra 595 (2022), 434-443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G<^>{\mathfrak {F}}=A<^>{\mathfrak {F}}B<^>{\mathfrak {F}} $ , where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $ , the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $ -residuals, $ \mathfrak {F} $ -projectors and $\mathfrak {F}$ -normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$ -products. | es_ES |
dc.description.sponsorship | The work of the third author is supported by the Mathematical Center in Akademgorodok under agreement no. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press | es_ES |
dc.relation.ispartof | Bulletin of the Australian Mathematical Society | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Weakly mutually permutable products | es_ES |
dc.subject | Supersoluble groups | es_ES |
dc.subject | Saturated formations | es_ES |
dc.subject | Projectors | es_ES |
dc.subject | Normalisers | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Generalised mutually permutable products and saturated formations, II | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1017/S0004972723001430 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministry of Science and Higher Education of the Russian Federation//075-15-2022-281/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Ballester-Bolinches, A.; Madanha, SY.; Shumba, TMM.; Pedraza Aguilera, MC. (2024). Generalised mutually permutable products and saturated formations, II. Bulletin of the Australian Mathematical Society. https://doi.org/10.1017/S0004972723001430 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1017/S0004972723001430 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\513717 | es_ES |
dc.contributor.funder | Ministry of Science and Higher Education of the Russian Federation | es_ES |