Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-García de la Puente, Natalia Lourdes | es_ES |
dc.contributor.author | del Amor, Rocío | es_ES |
dc.contributor.author | García-Torres, Fernando | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2024-04-30T07:15:55Z | |
dc.date.available | 2024-04-30T07:15:55Z | |
dc.date.issued | 2023-11-24 | es_ES |
dc.identifier.isbn | 978-3-031-48232-8 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/203857 | |
dc.description.abstract | [EN] Artificial Intelligence (AI) provides a fundamental aid in building operations, allowing infrastructure inspection and compliance with safety standards. In the collaborative tasks involved, detecting areas of interest, such as surface defects, is crucial. A drawback of supervised AI-based approaches is that they require manual annotation, which entails additional costs. This paper presents a novel unsupervised anomaly detection approach for locating defects based on generative models that learn the distribution of defect-free images. Using attention maps to validate in a subset, we propose a formulation that does not require accessing labelled images, enabling task automation, maintenance optimisation and cost reduction. | es_ES |
dc.description.sponsorship | This work has received funding from Horizon Europe, the European Union¿s Framework Programme for Research and Innovation, under Grant Agreement No. 101058054 (TURBO) and No. 101057404 (ZDZW). The work of Rocio del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Intelligent Data Engineering and Automated Learning - IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404 | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Visual Inspection | es_ES |
dc.subject | Infrastructure Inspection | es_ES |
dc.subject | Defects | es_ES |
dc.subject | Unsupervised Segmentation | es_ES |
dc.subject.classification | TEORÍA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Unsupervised Defect Detection for Infrastructure Inspection | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-031-48232-8_14 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101057404/EU/Non-Destructive Inspection Services for Digitally Enhanced Zero Waste Manufacturing/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101058054/EU/Towards tURbine Blade production with zero waste/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MIU//FPU20%2F05263/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Pérez-García De La Puente, NL.; Del Amor, R.; García-Torres, F.; Colomer, A.; Naranjo Ornedo, V. (2023). Unsupervised Defect Detection for Infrastructure Inspection. Springer. 142-153. https://doi.org/10.1007/978-3-031-48232-8_14 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 24th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2023) | es_ES |
dc.relation.conferencedate | Noviembre 22-24,2023 | es_ES |
dc.relation.conferenceplace | Évora, Portugal | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-031-48232-8_14 | es_ES |
dc.description.upvformatpinicio | 142 | es_ES |
dc.description.upvformatpfin | 153 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\504437 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Universidades | es_ES |