- -

Machine Learning for Energy-Efficient Fluid Bed Dryer Pharmaceutical Machines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning for Energy-Efficient Fluid Bed Dryer Pharmaceutical Machines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barriga, Roberto es_ES
dc.contributor.author Romero, Miquel es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.date.accessioned 2024-04-30T18:06:44Z
dc.date.available 2024-04-30T18:06:44Z
dc.date.issued 2023-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203877
dc.description.abstract [EN] The pharmaceutical industry is facing significant economic challenges due to measures aimed at containing healthcare costs and evolving healthcare regulations. In this context, pharmaceutical laboratories seek to extend the lifespan of their machinery, particularly fluid bed dryers, which play a crucial role in the drug production process. Older fluid bed dryers, lacking advanced sensors for real-time temperature optimization, rely on fixed-time deterministic approaches controlled by operators. To address these limitations, a groundbreaking approach taking into account Exploration Data Analysis (EDA) and a Catboost machine-learning model is presented. This research aims to analyze and enhance a drug production process on a large scale, showcasing how AI algorithms can revolutionize the manufacturing industry. The Catboost model effectively reduces preheating phase time, resulting in significant energy savings. By continuously monitoring critical parameters, a paradigm shift from the conventional fixed-time models is achieved. It has been shown that the model is able to predict on average a reduction of 50.45% of the preheating process duration and up to 59.68% in some cases. Likewise, the energy consumption of the fluid bed dryer for the preheating process could be reduced on average by 50.48% and up to 59.76%, which would result on average in around 3.120 kWh energy consumption savings per year. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy consumption es_ES
dc.subject IoT-based power control systems es_ES
dc.subject Machine learning es_ES
dc.subject Optimization using sensor data es_ES
dc.subject Predictive control es_ES
dc.subject Pharmaceutical technology es_ES
dc.subject Process modeling es_ES
dc.subject Exploratory data analysis es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Machine Learning for Energy-Efficient Fluid Bed Dryer Pharmaceutical Machines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics12204325 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Barriga, R.; Romero, M.; Hassan Mohamed, H. (2023). Machine Learning for Energy-Efficient Fluid Bed Dryer Pharmaceutical Machines. Electronics. 12(20). https://doi.org/10.3390/electronics12204325 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics12204325 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\515777 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem