- -

Adaptive Truck Platooning with Drones: A Decentralized Approach for Highway Monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adaptive Truck Platooning with Drones: A Decentralized Approach for Highway Monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Curtò, J. es_ES
dc.contributor.author de Zarzà, I. es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2024-05-02T18:08:19Z
dc.date.available 2024-05-02T18:08:19Z
dc.date.issued 2023-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203923
dc.description.abstract [EN] The increasing demand for efficient and safe transportation systems has led to the development of autonomous vehicles and vehicle platooning. Truck platooning, in particular, offers numerous benefits, such as reduced fuel consumption, enhanced traffic flow, and increased safety. In this paper, we present a drone-based decentralized framework for truck platooning in highway monitoring scenarios. Our approach employs multiple drones, which communicate with the trucks and make real-time decisions on whether to form a platoon or not, leveraging Model Predictive Control (MPC) and Unscented Kalman Filter (UKF) for drone formation control. The proposed framework integrates a simple truck model in the existing drone-based simulation, addressing the truck dynamics and constraints for practical applicability. Simulation results demonstrate the effectiveness of our approach in maintaining the desired platoon formations while ensuring collision avoidance and adhering to the vehicle constraints. This innovative drone-based truck platooning system has the potential to significantly improve highway monitoring efficiency, traffic management, and safety. Our drone-based truck platooning system is primarily designed for implementation in highway monitoring and management scenarios, where its enhanced communication and real-time decision-making capabilities can significantly contribute to traffic efficiency and safety. Future work may focus on field trials to validate the system in real-world conditions and further refine the algorithms based on practical feedback and evolving vehicular technologies. es_ES
dc.description.sponsorship : We thank the following funding sources from GOETHE-University Frankfurt am Main; DePP Dezentrale Plannung von Platoons im Straßengüterverkehr mit Hilfe einer KI auf Basis einzelner LKW , Center for Data Science & AI and HessianAI AI Biology . We acknowledge the support of R&D project PID2021-122580NB-I00 funded by MCIN/AEI/10.13039/501100011033 and ERDF. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Truck platooning es_ES
dc.subject MPC es_ES
dc.subject UKF es_ES
dc.subject Drones es_ES
dc.subject V2V communication es_ES
dc.subject Connected vehicles es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Adaptive Truck Platooning with Drones: A Decentralized Approach for Highway Monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics12244913 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122580NB-I00/ES/SISTEMAS INTELIGENTES DE SENSORIZACION PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation De Curtò, J.; De Zarzà, I.; Cano, J.; Manzoni, P.; Tavares De Araujo Cesariny Calafate, CM. (2023). Adaptive Truck Platooning with Drones: A Decentralized Approach for Highway Monitoring. Electronics. 12(24). https://doi.org/10.3390/electronics12244913 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics12244913 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\504945 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Goethe-Universität Frankfurt am Main es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem