- -

Optimizing Neural Networks for Imbalanced Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing Neural Networks for Imbalanced Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Zarzà, I. es_ES
dc.contributor.author de Curtò, J. es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2024-05-02T18:08:22Z
dc.date.available 2024-05-02T18:08:22Z
dc.date.issued 2023-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203925
dc.description.abstract [EN] Imbalanced datasets pose pervasive challenges in numerous machine learning (ML) applications, notably in areas such as fraud detection, where fraudulent cases are vastly outnumbered by legitimate transactions. Conventional ML methods often grapple with such imbalances, resulting in models with suboptimal performance concerning the minority class. This study undertakes a thorough examination of strategies for optimizing supervised learning algorithms when confronted with imbalanced datasets, emphasizing resampling techniques. Initially, we explore multiple methodologies, encompassing Gaussian Naive Bayes, linear and quadratic discriminant analysis, K-nearest neighbors (K-NN), support vector machines (SVMs), decision trees, and multi-layer perceptron (MLP). We apply these on a four-class spiral dataset, a notoriously demanding non-linear classification problem, to gauge their effectiveness. Subsequently, we leverage the garnered insights for a real-world credit card fraud detection task on a public dataset, where we achieve a compelling accuracy of 99.937%. In this context, we compare and contrast the performances of undersampling, oversampling, and the synthetic minority oversampling technique (SMOTE). Our findings highlight the potency of resampling strategies in augmenting model performance on the minority class; in particular, oversampling techniques achieve the best performance, resulting in an accuracy of 99.928% with a significantly low number of false negatives (21/227,451). es_ES
dc.description.sponsorship We thank the following funding sources from GOETHE-University Frankfurt am Main; "DePP-Dezentrale Plannung von Platoons im Stra beta enguterverkehr mit Hilfe einer KI auf Basis einzelner LKW", "Center for Data Science & AI", and "xAIBiology". We acknowledge the support of R & D project PID2021-122580NB-I00, funded by MCIN/AEI/10.13039/501100011033 and ERDF. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Neural networks es_ES
dc.subject Imbalanced datasets es_ES
dc.subject Resampling techniques es_ES
dc.subject Fraud detection es_ES
dc.subject Hyperparameter optimization es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Optimizing Neural Networks for Imbalanced Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics12122674 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122580NB-I00/ES/SISTEMAS INTELIGENTES DE SENSORIZACION PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation De Zarzà, I.; De Curtò, J.; Tavares De Araujo Cesariny Calafate, CM. (2023). Optimizing Neural Networks for Imbalanced Data. Electronics. 12(12). https://doi.org/10.3390/electronics12122674 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics12122674 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\509694 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Goethe-Universität Frankfurt am Main es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem