- -

Approximation of Almost Diagonal Non-linear Maps by Lattice Lipschitz Operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Approximation of Almost Diagonal Non-linear Maps by Lattice Lipschitz Operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arnau-Notari, Andres Roger es_ES
dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Erdogan, Ezgi es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2024-05-02T18:08:34Z
dc.date.available 2024-05-02T18:08:34Z
dc.date.issued 2024-03 es_ES
dc.identifier.issn 1678-7544 es_ES
dc.identifier.uri http://hdl.handle.net/10251/203933
dc.description.abstract [EN] Lattice Lipschitz operators define a new class of nonlinear Banach-lattice-valued maps that can be written as diagonal functions with respect to a certain basis. In the n-dimensional case, such a map can be represented as a vector of size n of real-valued functions of one variable. In this paper we develop a method to approximate almost diagonal maps by means of lattice Lipschitz operators. The proposed technique is based on the approximation properties and error bounds obtained for these operators, together with a pointwise version of the interpolation of McShane and Whitney extension maps that can be applied to almost diagonal functions. In order to get the desired approximation, it is necessary to previously obtain an approximation to the set of eigenvectors of the original function. We focus on the explicit computation of error formulas and on illustrative examples to present our construction. es_ES
dc.description.sponsorship The first author was supported by a contract of the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-21), Universitat Politecnica de Valencia. This publication is part of the R & D & I project PID2020-112759GB-I00 funded by MCIN/AEI /10.13039/501100011033. This publication is part of the R & D & I project PID2022-138342NB-I00 funded by MCIN/AEI /10.13039/501100011033. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Bulletin of the Brazilian Mathematical Society New Series es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Lattice es_ES
dc.subject Non-linear map es_ES
dc.subject Lipschitz operator es_ES
dc.subject Normed space es_ES
dc.subject Diagonalisation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Approximation of Almost Diagonal Non-linear Maps by Lattice Lipschitz Operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00574-024-00385-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112759GB-I00/ES/METAESTRUCTURAS HIPERUNIFORMES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138342NB-I00/ES/TECNICAS DE ANALISIS FUNCIONAL EN PROBLEMAS DE APROXIMACION Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-21/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Arnau-Notari, AR.; Calabuig, JM.; Erdogan, E.; Sánchez Pérez, EA. (2024). Approximation of Almost Diagonal Non-linear Maps by Lattice Lipschitz Operators. Bulletin of the Brazilian Mathematical Society New Series. 55(1). https://doi.org/10.1007/s00574-024-00385-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00574-024-00385-9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\513708 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem