- -

Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author D'Elia, Domenica es_ES
dc.contributor.author Truu, Jaak es_ES
dc.contributor.author Lahti, Leo es_ES
dc.contributor.author Berland, Magali es_ES
dc.contributor.author Papoutsoglou, Georgios es_ES
dc.contributor.author Ceci, Michelangelo es_ES
dc.contributor.author Zomer, Aldert es_ES
dc.contributor.author Lopes, Marta B. es_ES
dc.contributor.author Ibrahimi, Eliana es_ES
dc.contributor.author Gruca, Aleksandra es_ES
dc.contributor.author Nechyporenko, Alina es_ES
dc.contributor.author Frohme, Marcus es_ES
dc.contributor.author Klammsteiner, Thomas es_ES
dc.contributor.author Carrillo-de Santa Pau, Enrique es_ES
dc.contributor.author Marcos-Zambrano, Laura Judith es_ES
dc.contributor.author Tarazona, Sonia es_ES
dc.date.accessioned 2024-05-08T18:04:14Z
dc.date.available 2024-05-08T18:04:14Z
dc.date.issued 2023-09-25 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/204052
dc.description.abstract [EN] The rapid development of machine learning (ML) techniques has opened up the data-dense field of microbiome research for novel therapeutic, diagnostic, and prognostic applications targeting a wide range of disorders, which could substantially improve healthcare practices in the era of precision medicine. However, several challenges must be addressed to exploit the benefits of ML in this field fully. In particular, there is a need to establish "gold standard" protocols for conducting ML analysis experiments and improve interactions between microbiome researchers and ML experts. The Machine Learning Techniques in Human Microbiome Studies (ML4Microbiome) COST Action CA18131 is a European network established in 2019 to promote collaboration between discovery-oriented microbiome researchers and data-driven ML experts to optimize and standardize ML approaches for microbiome analysis. This perspective paper presents the key achievements of ML4Microbiome, which include identifying predictive and discriminatory 'omics' features, improving repeatability and comparability, developing automation procedures, and defining priority areas for the novel development of ML methods targeting the microbiome. The insights gained from ML4Microbiome will help to maximize the potential of ML in microbiome research and pave the way for new and improved healthcare practices. es_ES
dc.description.sponsorship The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study is based upon work from COST Action ML4Microbiome Statistical and machine learning techniques in human microbiome studies (CA18131), supported by COST (European Cooperation in Science and Technology), www.cost.eu. MB acknowledges support through the Metagenopolis grant ANR-11-DPBS-0001. IM-I acknowledges support by the Miguel Servet Type II program (CPII21/00013) of the ISCIII-Madrid (Spain), co-financed by the FEDER. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial intelligence es_ES
dc.subject Best practices es_ES
dc.subject Machine learning es_ES
dc.subject Microbiome es_ES
dc.subject Standards es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2023.1257002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-DPBS-0001/FR/MetaGenoPolis/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CPII21%2F00013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA18131/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation D'elia, D.; Truu, J.; Lahti, L.; Berland, M.; Papoutsoglou, G.; Ceci, M.; Zomer, A.... (2023). Advancing microbiome research with machine learning: key findings from the ML4Microbiome COST action. Frontiers in Microbiology. 14. https://doi.org/10.3389/fmicb.2023.1257002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2023.1257002 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.identifier.pmid 37808321 es_ES
dc.identifier.pmcid PMC10558209 es_ES
dc.relation.pasarela S\500335 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem