- -

Evaluation of Suitability of Low-Cost Gas Sensors for Monitoring Indoor and Outdoor Urban Areas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of Suitability of Low-Cost Gas Sensors for Monitoring Indoor and Outdoor Urban Areas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Jianchen es_ES
dc.contributor.author Viciano-Tudela, Sandra es_ES
dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Lacuesta, Raquel es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-05-15T18:08:49Z
dc.date.available 2024-05-15T18:08:49Z
dc.date.issued 2023-09-15 es_ES
dc.identifier.issn 1530-437X es_ES
dc.identifier.uri http://hdl.handle.net/10251/204176
dc.description.abstract [EN] Air pollution is a significant environmental risk to health; reducing pollution levels could help minimize related diseases, such as cancer, asthma, and stroke. Gas sensors, such as the MQ family, can be used to establish security measures for detecting environmental problems and improving air quality. The aim of this article is to develop a low-cost system using MQ sensors and an Arduino Mega to monitor air quality in different indoor and outdoor scenarios and identify the origin of the data using different approaches such as discriminant analysis (DA) and probabilistic neural network (PNN). The system is composed of an Arduino Mega and four MQ gas sensors. The response of four different MQ sensors (MQ-2, MQ-3, MQ-7, and MQ-135) to different indoor and outdoor environments is analyzed. The results indicate that the living room and kitchen have a stable response for all sensors, while the bar and the terrace have higher variability in their response. This article presents the results of using DA and PNN to identify indoor and outdoor areas using different combinations of MQ sensors, achieving up to 99.47% correctly classified cases with all sensors using PNN. This article's results show that their proposed system outperforms existing applications in correctly classifying cases, with well-classified cases with two sensors and the PNN reaching 98.22%. es_ES
dc.description.sponsorship This work was supported by the Programa Estatal de I+D+i Orientada a los Retos de la Sociedad, en el marco del Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020, under Project PID2020-114467RR-C33/AEI/10.13039/501100011033. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Sensors Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Air pollution es_ES
dc.subject Arduino Mega es_ES
dc.subject Discriminant analysis (DA) es_ES
dc.subject EHealth es_ES
dc.subject MQ sensor es_ES
dc.subject Probabilistic neural network (PNN) es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Evaluation of Suitability of Low-Cost Gas Sensors for Monitoring Indoor and Outdoor Urban Areas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JSEN.2023.3301651 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114467RR-C33/ES/RED HETEROGENEA INTELIGENTE DE SENSORES INALAMBRICOS PARA MONITORIZAR Y ESTIMAR EL CONTENIDO DE RESINA DE CISTUS LADANIFER/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Wang, J.; Viciano-Tudela, S.; Parra, L.; Lacuesta, R.; Lloret, J. (2023). Evaluation of Suitability of Low-Cost Gas Sensors for Monitoring Indoor and Outdoor Urban Areas. IEEE Sensors Journal. 23(18):20968-20975. https://doi.org/10.1109/JSEN.2023.3301651 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JSEN.2023.3301651 es_ES
dc.description.upvformatpinicio 20968 es_ES
dc.description.upvformatpfin 20975 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 18 es_ES
dc.relation.pasarela S\513586 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem