Mostrar el registro sencillo del ítem
dc.contributor.author | del Tejo Catalá, Omar | es_ES |
dc.contributor.author | Guardiola Garcia, Jose Luis | es_ES |
dc.contributor.author | Pérez, Javier | es_ES |
dc.contributor.author | Millan-Escriva, David | es_ES |
dc.contributor.author | Pérez Jiménez, Alberto José | es_ES |
dc.contributor.author | Perez-Cortes, Juan-Carlos | es_ES |
dc.date.accessioned | 2024-05-15T18:08:52Z | |
dc.date.available | 2024-05-15T18:08:52Z | |
dc.date.issued | 2023 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204178 | |
dc.description.abstract | [EN] Pose estimation assesses the 6D pose of one or many objects in a scene. Considerable attention has been dedicated to the advancement of pose estimation algorithms capable of identifying the orientation of multiple objects within a scene in cases where partial occlusion occurs. However, only a few works focus on developing a parallelizable hypotheses-based estimator that naturally handles object symmetries. These algorithms should also tackle some issues: meaningless perspectives, objects with multiple uncertain local poses but a single global correct pose, and multiple correct poses. This paper proposes a novel probabilistic algorithm for pose estimation that addresses these issues. This probabilistic algorithm combines the information from multiple cameras to achieve a unique prediction that assembles global object information. The algorithm is tested over synthetic objects that simulate these issues. It achieves a rotation error below 1.5 degrees, and a translation error of 1.5 pixels in the datasets used. Those results suggest that the algorithm can handle the mentioned issues up to a certain accuracy. Additionally, the method is compared against a state-of-the-art methodology of the LineMOD dataset. This comparison shows that our algorithm can compete against state-of-the-art algorithms in terms of accuracy. | es_ES |
dc.description.sponsorship | This work is part of the FitOptiVis project [30] funded by the Electronic Components and Systems for European Leadership (ECSEL) Joint Undertaking under grant number H2020-ECSEL-2017-2-783162. Moreover, this work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centersunder project expedient IMAMCN/2021/1. It was also funded by the Cervera Network for R+D+I Leadership in Applied Artificial Intelligence (CEL.IA), co-funded by the Centre for Industrial and Technological Development, E.P.E. (CDTI) and by the European Union through the Next Generation EU Fund, within the Cervera Aids program for Technological Centres, with the expedient number CER-20211022. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Convolutional neural networks | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Graph neural networks | es_ES |
dc.subject | Pose estimation | es_ES |
dc.subject | Orientation estimation | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Probabilistic Pose Estimation From Multiple Hypotheses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2023.3288569 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/783162/EU/smart IntegraTion and OPtimization Technologies for highly efficient Image and VIdeo processing Systems/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IVACE//IMAMCN%2F2021%2F1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Del Tejo Catalá, O.; Guardiola Garcia, JL.; Pérez, J.; Millan-Escriva, D.; Pérez Jiménez, AJ.; Perez-Cortes, J. (2023). Probabilistic Pose Estimation From Multiple Hypotheses. IEEE Access. 11:64507-64517. https://doi.org/10.1109/ACCESS.2023.3288569 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2023.3288569 | es_ES |
dc.description.upvformatpinicio | 64507 | es_ES |
dc.description.upvformatpfin | 64517 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\513583 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Institut Valencià de Competitivitat Empresarial | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |