- -

Probabilistic Pose Estimation From Multiple Hypotheses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic Pose Estimation From Multiple Hypotheses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author del Tejo Catalá, Omar es_ES
dc.contributor.author Guardiola Garcia, Jose Luis es_ES
dc.contributor.author Pérez, Javier es_ES
dc.contributor.author Millan-Escriva, David es_ES
dc.contributor.author Pérez Jiménez, Alberto José es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2024-05-15T18:08:52Z
dc.date.available 2024-05-15T18:08:52Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204178
dc.description.abstract [EN] Pose estimation assesses the 6D pose of one or many objects in a scene. Considerable attention has been dedicated to the advancement of pose estimation algorithms capable of identifying the orientation of multiple objects within a scene in cases where partial occlusion occurs. However, only a few works focus on developing a parallelizable hypotheses-based estimator that naturally handles object symmetries. These algorithms should also tackle some issues: meaningless perspectives, objects with multiple uncertain local poses but a single global correct pose, and multiple correct poses. This paper proposes a novel probabilistic algorithm for pose estimation that addresses these issues. This probabilistic algorithm combines the information from multiple cameras to achieve a unique prediction that assembles global object information. The algorithm is tested over synthetic objects that simulate these issues. It achieves a rotation error below 1.5 degrees, and a translation error of 1.5 pixels in the datasets used. Those results suggest that the algorithm can handle the mentioned issues up to a certain accuracy. Additionally, the method is compared against a state-of-the-art methodology of the LineMOD dataset. This comparison shows that our algorithm can compete against state-of-the-art algorithms in terms of accuracy. es_ES
dc.description.sponsorship This work is part of the FitOptiVis project [30] funded by the Electronic Components and Systems for European Leadership (ECSEL) Joint Undertaking under grant number H2020-ECSEL-2017-2-783162. Moreover, this work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centersunder project expedient IMAMCN/2021/1. It was also funded by the Cervera Network for R+D+I Leadership in Applied Artificial Intelligence (CEL.IA), co-funded by the Centre for Industrial and Technological Development, E.P.E. (CDTI) and by the European Union through the Next Generation EU Fund, within the Cervera Aids program for Technological Centres, with the expedient number CER-20211022. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Convolutional neural networks es_ES
dc.subject Deep learning es_ES
dc.subject Graph neural networks es_ES
dc.subject Pose estimation es_ES
dc.subject Orientation estimation es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Probabilistic Pose Estimation From Multiple Hypotheses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2023.3288569 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/783162/EU/smart IntegraTion and OPtimization Technologies for highly efficient Image and VIdeo processing Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IVACE//IMAMCN%2F2021%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Del Tejo Catalá, O.; Guardiola Garcia, JL.; Pérez, J.; Millan-Escriva, D.; Pérez Jiménez, AJ.; Perez-Cortes, J. (2023). Probabilistic Pose Estimation From Multiple Hypotheses. IEEE Access. 11:64507-64517. https://doi.org/10.1109/ACCESS.2023.3288569 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2023.3288569 es_ES
dc.description.upvformatpinicio 64507 es_ES
dc.description.upvformatpfin 64517 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\513583 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Institut Valencià de Competitivitat Empresarial es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem