- -

Segmenting computed tomograms for cardiac ablation using machine learning leveraged by domain knowledge encoding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Segmenting computed tomograms for cardiac ablation using machine learning leveraged by domain knowledge encoding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Feng, Ruibin es_ES
dc.contributor.author Deb, Brototo es_ES
dc.contributor.author Ganesan, Prasanth es_ES
dc.contributor.author Tjong, Fleur V.Y . es_ES
dc.contributor.author Rogers, Albert J. es_ES
dc.contributor.author Ruiperez-Campillo, Samuel es_ES
dc.contributor.author Somani, Sulaiman es_ES
dc.contributor.author Clopton, Paul es_ES
dc.contributor.author Baykaner, Tina es_ES
dc.contributor.author Rodrigo, Miguel es_ES
dc.contributor.author Zou, James es_ES
dc.contributor.author Haddad, Francois es_ES
dc.contributor.author Zaharia, Matei es_ES
dc.contributor.author Narayan, Sanjiv M. es_ES
dc.date.accessioned 2024-05-15T18:09:12Z
dc.date.available 2024-05-15T18:09:12Z
dc.date.issued 2023-10-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204188
dc.description.abstract [EN] Background: Segmentation of computed tomography (CT) is important for many clinical procedures including personalized cardiac ablation for the management of cardiac arrhythmias. While segmentation can be automated by machine learning (ML), it is limited by the need for large, labeled training data that may be difficult to obtain. We set out to combine ML of cardiac CT with domain knowledge, which reduces the need for large training datasets by encoding cardiac geometry, which we then tested in independent datasets and in a prospective study of atrial fibrillation (AF) ablation. Methods: We mathematically represented atrial anatomy with simple geometric shapes and derived a model to parse cardiac structures in a small set of N=6 digital hearts. The model, termed ¿virtual dissection,¿ was used to train ML to segment cardiac CT in N = 20 patients, then tested in independent datasets and in a prospective study. Results: In independent test cohorts (N = 160) from 2 Institutions with different CT scanners, atrial structures were accurately segmented with Dice scores of 96.7% in internal (IQR: 95.3%¿97.7%) and 93.5% in external (IQR: 91.9%¿94.7%) test data, with good agreement with experts (r = 0.99; p < 0.0001). In a prospective study of 42 patients at ablation, this approach reduced segmentation time by 85% (2.3 ± 0.8 vs. 15.0 ± 6.9 min, p < 0.0001), yet provided similar Dice scores to experts (93.9% (IQR: 93.0%¿94.6%) vs. 94.4% (IQR: 92.8%¿95.7%), p = NS). Conclusions: Encoding cardiac geometry using mathematical models greatly accelerated training of ML to segment CT, reducing the need for large training sets while retaining accuracy in independent test data. Combining ML with domain knowledge may have broad applications. es_ES
dc.description.sponsorship Research reported in this publication was supported by grants from the National Institutes of Health under award numbers R01 HL149134 and R01 HL83359. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Cardiovascular Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cardiac CT segmentation es_ES
dc.subject Machine learning es_ES
dc.subject Mathematical modeling es_ES
dc.subject Domain knowledge es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Ablation es_ES
dc.title Segmenting computed tomograms for cardiac ablation using machine learning leveraged by domain knowledge encoding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fcvm.2023.1189293 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL149134/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//R01 HL83359/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Feng, R.; Deb, B.; Ganesan, P.; Tjong, FV..; Rogers, AJ.; Ruiperez-Campillo, S.; Somani, S.... (2023). Segmenting computed tomograms for cardiac ablation using machine learning leveraged by domain knowledge encoding. Frontiers in Cardiovascular Medicine. 10. https://doi.org/10.3389/fcvm.2023.1189293 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fcvm.2023.1189293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2297-055X es_ES
dc.identifier.pmid 37849936 es_ES
dc.identifier.pmcid PMC10577270 es_ES
dc.relation.pasarela S\501891 es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem