- -

Knock detection in spark ignited heavy duty engines: An application of machine learning techniques with various knock sensor locations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Knock detection in spark ignited heavy duty engines: An application of machine learning techniques with various knock sensor locations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aramburu-Orihuela, Alexandra es_ES
dc.contributor.author Guido, C. es_ES
dc.contributor.author Bares-Moreno, Pau es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Napolitano, P. es_ES
dc.contributor.author Beatrice, C. es_ES
dc.date.accessioned 2024-05-15T18:09:14Z
dc.date.available 2024-05-15T18:09:14Z
dc.date.issued 2024-01 es_ES
dc.identifier.issn 0263-2241 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204189
dc.description.abstract [EN] Knock detection is critical to engine control as it prevents damage and ensures optimal performance. However, it still presents significant challenges, particularly in alternative combustion systems, due to its complex nature. This study compares two machine learning (ML) approaches (supervised and unsupervised) for detecting knock in a heavy-duty engine, using various knock-sensor setups. It focuses on using accelerometer data as the primary input, a widely used on-road sensor whose compatibility with ML approaches requires further exploration. The analysis includes One-Class Support Vector Machine (OC-SVM) and Convolutional Neural Networks (CNN). Both methods demonstrated their ability to detect engine knock effectively, achieving sensitivity levels over 80% compared to MAPO (maximum amplitude pressure oscillation) index. The sensor placement revealed different effects over the results according to the method used, whereas the number of sensors showed a minor influence on the outcomes. The advantages and disadvantages of each method are discussed. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Measurement es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Knock detection es_ES
dc.subject Machine learning es_ES
dc.subject CNN es_ES
dc.subject OC-SVM es_ES
dc.subject Feature extraction es_ES
dc.subject Heavy-duty engine es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Knock detection in spark ignited heavy duty engines: An application of machine learning techniques with various knock sensor locations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.measurement.2023.113860 es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2025-11-14 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Aramburu-Orihuela, A.; Guido, C.; Bares-Moreno, P.; Pla Moreno, B.; Napolitano, P.; Beatrice, C. (2024). Knock detection in spark ignited heavy duty engines: An application of machine learning techniques with various knock sensor locations. Measurement. 224. https://doi.org/10.1016/j.measurement.2023.113860 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.measurement.2023.113860 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 224 es_ES
dc.relation.pasarela S\513781 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem