- -

A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leon, Jonas F. es_ES
dc.contributor.author Li, Yuda es_ES
dc.contributor.author Martin, Xabier A. es_ES
dc.contributor.author Calvet, Laura es_ES
dc.contributor.author Panadero, Javier es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.date.accessioned 2024-05-15T18:09:17Z
dc.date.available 2024-05-15T18:09:17Z
dc.date.issued 2023-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204190
dc.description.abstract [EN] The use of simulation and reinforcement learning can be viewed as a flexible approach to aid managerial decision-making, particularly in the face of growing complexity in manufacturing and logistic systems. Efficient supply chains heavily rely on steamlined warehouse operations, and therefore, having a well-informed storage location assignment policy is crucial for their improvement. The traditional methods found in the literature for tackling the storage location assignment problem have certain drawbacks, including the omission of stochastic process variability or the neglect of interaction between various warehouse workers. In this context, we explore the possibilities of combining simulation with reinforcement learning to develop effective mechanisms that allow for the quick acquisition of information about a complex environment, the processing of that information, and then the decision-making about the best storage location assignment. In order to test these concepts, we will make use of the FlexSim commercial simulator. es_ES
dc.description.sponsorship This work has been supported by the European Commission (SUN HORIZON-CL4-2022-HUMAN-01-14-101092612 and AIDEAS HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294),FlexSim, Spindox, the Industrial Doctorate Program of the Catalan Government (2020-DI-116), and the Investigo Program of the Generalitat Valenciana (INVEST/2022/342). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Warehouse operations es_ES
dc.subject Hybrid algorithms es_ES
dc.subject Simulation es_ES
dc.subject Reinforcement learning es_ES
dc.subject Optimization es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a16090408 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101057294/EU/AI Driven industrial Equipment product life cycle boosting Agility, Sustainability and resilience/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INVEST%2F2022%2F342/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Leon, JF.; Li, Y.; Martin, XA.; Calvet, L.; Panadero, J.; Juan, AA. (2023). A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations. Algorithms. 16(9). https://doi.org/10.3390/a16090408 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/a16090408 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1999-4893 es_ES
dc.relation.pasarela S\513582 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem