Mostrar el registro sencillo del ítem
dc.contributor.author | Leon, Jonas F. | es_ES |
dc.contributor.author | Li, Yuda | es_ES |
dc.contributor.author | Martin, Xabier A. | es_ES |
dc.contributor.author | Calvet, Laura | es_ES |
dc.contributor.author | Panadero, Javier | es_ES |
dc.contributor.author | Juan, Angel A. | es_ES |
dc.date.accessioned | 2024-05-15T18:09:17Z | |
dc.date.available | 2024-05-15T18:09:17Z | |
dc.date.issued | 2023-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204190 | |
dc.description.abstract | [EN] The use of simulation and reinforcement learning can be viewed as a flexible approach to aid managerial decision-making, particularly in the face of growing complexity in manufacturing and logistic systems. Efficient supply chains heavily rely on steamlined warehouse operations, and therefore, having a well-informed storage location assignment policy is crucial for their improvement. The traditional methods found in the literature for tackling the storage location assignment problem have certain drawbacks, including the omission of stochastic process variability or the neglect of interaction between various warehouse workers. In this context, we explore the possibilities of combining simulation with reinforcement learning to develop effective mechanisms that allow for the quick acquisition of information about a complex environment, the processing of that information, and then the decision-making about the best storage location assignment. In order to test these concepts, we will make use of the FlexSim commercial simulator. | es_ES |
dc.description.sponsorship | This work has been supported by the European Commission (SUN HORIZON-CL4-2022-HUMAN-01-14-101092612 and AIDEAS HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294),FlexSim, Spindox, the Industrial Doctorate Program of the Catalan Government (2020-DI-116), and the Investigo Program of the Generalitat Valenciana (INVEST/2022/342). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Warehouse operations | es_ES |
dc.subject | Hybrid algorithms | es_ES |
dc.subject | Simulation | es_ES |
dc.subject | Reinforcement learning | es_ES |
dc.subject | Optimization | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a16090408 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101057294/EU/AI Driven industrial Equipment product life cycle boosting Agility, Sustainability and resilience/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/HE/101092612/EU/Social and hUman ceNtered XR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//INVEST%2F2022%2F342/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Leon, JF.; Li, Y.; Martin, XA.; Calvet, L.; Panadero, J.; Juan, AA. (2023). A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse Operations. Algorithms. 16(9). https://doi.org/10.3390/a16090408 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/a16090408 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1999-4893 | es_ES |
dc.relation.pasarela | S\513582 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |