- -

A Novel Signal Restoration Method of Noisy Photoplethysmograms for Uninterrupted Health Monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Novel Signal Restoration Method of Noisy Photoplethysmograms for Uninterrupted Health Monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vraka, Aikaterini es_ES
dc.contributor.author Zangróniz, Roberto es_ES
dc.contributor.author Quesada, Aurelio es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2024-05-16T18:08:47Z
dc.date.available 2024-05-16T18:08:47Z
dc.date.issued 2024-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204214
dc.description.abstract [EN] Health-tracking from photoplethysmography (PPG) signals is significantly hindered by motion artifacts (MAs). Although many algorithms exist to detect MAs, the corrupted signal often remains unexploited. This work introduces a novel method able to reconstruct noisy PPGs and facilitate uninterrupted health monitoring. The algorithm starts with spectral-based MA detection, followed by signal reconstruction by using the morphological and heart-rate variability information from the clean segments adjacent to noise. The algorithm was tested on (a) 30 noisy PPGs of a maximum 20 s noise duration and (b) 28 originally clean PPGs, after noise addition (2-120 s) (1) with and (2) without cancellation of the corresponding clean segment. Sampling frequency was 250 Hz after resampling. Noise detection was evaluated by means of accuracy, sensitivity, and specificity. For the evaluation of signal reconstruction, the heart-rate (HR) was compared via Pearson correlation (PC) and absolute error (a) between ECGs and reconstructed PPGs and (b) between original and reconstructed PPGs. Bland-Altman (BA) analysis for the differences in HR estimation on original and reconstructed segments of (b) was also performed. Noise detection accuracy was 90.91% for (a) and 99.38-100% for (b). For the PPG reconstruction, HR showed 99.31% correlation in (a) and >90% for all noise lengths in (b). Mean absolute error was 1.59 bpm for (a) and 1.26-1.82 bpm for (b). BA analysis indicated that, in most cases, 90% or more of the recordings fall within the confidence interval, regardless of the noise length. Optimal performance is achieved even for signals of noise up to 2 min, allowing for the utilization and further analysis of recordings that would otherwise be discarded. Thereby, the algorithm can be implemented in monitoring devices, assisting in uninterrupted health-tracking. es_ES
dc.description.sponsorship This research has received financial support from public grants PID2021-123804OB-I00, PID2021-00X128525-IV0, and TED2021-130935B-I00 of the Spanish Government, 10.13039/501100011033 jointly with the European Regional Development Fund (EU), SBPLY/17/180501/000411 and SBPLY/21/180501/000186 from Junta de Comunidades de Castilla-La Mancha, and AICO/2021/286 from Generalitat Valenciana. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Photoplethysmography es_ES
dc.subject Motion artifacts es_ES
dc.subject Noise detection es_ES
dc.subject Signal reconstruction es_ES
dc.subject Health-tracking es_ES
dc.subject Uninterrupted monitoring es_ES
dc.subject Heart-rate es_ES
dc.subject Heart-rate variability es_ES
dc.subject Pulse rate variability es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Novel Signal Restoration Method of Noisy Photoplethysmograms for Uninterrupted Health Monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s24010141 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123804OB-I00/ES/INTELIGENCIA ARTIFICIAL PARA LA MEDICINA MOVIL INNOVADORA EN ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F286/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F21%2F180501%2F000186/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000411//Caracterización del sustrato auricular mediante análisis de señal como herramienta de asistencia procedimental en ablación por catéter de fibrilación auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-00X128525-IV0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TED2021-130935B-I00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Vraka, A.; Zangróniz, R.; Quesada, A.; Hornero, F.; Alcaraz, R.; Rieta, JJ. (2024). A Novel Signal Restoration Method of Noisy Photoplethysmograms for Uninterrupted Health Monitoring. Sensors. 24(1). https://doi.org/10.3390/s24010141 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s24010141 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38203003 es_ES
dc.identifier.pmcid PMC10781253 es_ES
dc.relation.pasarela S\513738 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem