Catalán, S.; Igual, FD.; Herrero, JR.; Rodríguez-Sánchez, R.; Quintana-Ortí, ES. (2023). Programming parallel dense matrix factorizations and inversion for new-generation NUMA architectures. Journal of Parallel and Distributed Computing. 175:51-65. https://doi.org/10.1016/j.jpdc.2023.01.004
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/204242
Title:
|
Programming parallel dense matrix factorizations and inversion for new-generation NUMA architectures
|
Author:
|
Catalán, Sandra
Igual, Francisco D.
Herrero, José R.
Rodríguez-Sánchez, Rafael
Quintana-Ortí, Enrique S.
|
UPV Unit:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
|
Issued date:
|
|
Abstract:
|
[EN] We propose a methodology to address the programmability issues derived from the emergence of newgeneration shared-memory NUMA architectures. For this purpose, we employ dense matrix factorizations and matrix inversion ...[+]
[EN] We propose a methodology to address the programmability issues derived from the emergence of newgeneration shared-memory NUMA architectures. For this purpose, we employ dense matrix factorizations and matrix inversion (DMFI) as a use case, and we target two modern architectures (AMD Rome and Huawei Kunpeng 920) that exhibit configurable NUMA topologies. Our methodology pursues performance portability across different NUMA configurations by proposing multi-domain implementations for DMFI plus a hybrid task- and loop-level parallelization that configures multi-threaded executions to fix core-todata binding, exploiting locality at the expense of minor code modifications. In addition, we introduce a generalization of the multi-domain implementations for DMFI that offers support for virtually any NUMA topology in present and future architectures. Our experimentation on the two target architectures for three representative dense linear algebra operations validates the proposal, reveals insights on the necessity of adapting both the codes and their execution to improve data access locality, and reports performance across architectures and inter- and intra-socket NUMA configurations competitive with state-of-the-art message-passing implementations, maintaining the ease of development usually associated with shared-memory programming.
[-]
|
Subjects:
|
NUMA architectures
,
Chiplets
,
Dense linear algebra
,
Shared memory programming
,
Portability
|
Copyrigths:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Source:
|
Journal of Parallel and Distributed Computing. (issn:
0743-7315
)
|
DOI:
|
10.1016/j.jpdc.2023.01.004
|
Publisher:
|
Elsevier
|
Publisher version:
|
https://doi.org/10.1016/j.jpdc.2023.01.004
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107255GB-C21/ES/BSC - COMPUTACION DE ALTAS PRESTACIONES VIII/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107255GB-C21/ES/BSC - COMPUTACION DE ALTAS PRESTACIONES VIII/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C22/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTES DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UPV/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126576NB-I00/ES/SOFTWARE DE SISTEMA PARA ARQUITECTURAS Y APLICACIONES DE NUEVA GENERACION/
info:eu-repo/grantAgreement/EC/H2020/955558/EU
info:eu-repo/grantAgreement/CAM//S2018%2FTCS-4423 /
info:eu-repo/grantAgreement/CAM//PR65%2F19-22445/
info:eu-repo/grantAgreement/GC//2017-SGR-1414/
[-]
|
Thanks:
|
This research was sponsored by project PID2019-107255GB of Ministerio de Ciencia, Innovacion y Universidades; project S2018/TCS-4423 of Comunidad de Madrid; project 2017-SGR-1414 of the Generalitat de Catalunya and the ...[+]
This research was sponsored by project PID2019-107255GB of Ministerio de Ciencia, Innovacion y Universidades; project S2018/TCS-4423 of Comunidad de Madrid; project 2017-SGR-1414 of the Generalitat de Catalunya and the Madrid Government under the Multiannual Agreement with UCM in the line Pro-gram to Stimulate Research for Young Doctors in the context of the V PRICIT, project PR65/19-22445. This project has also re-ceived funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union's Horizon 2020 research and innovation programme, and Spain, Germany, France, Italy, Poland, Switzerland, Norway. The work is also supported by grants PID2020-113656RB-C22 and PID2021-126576NB-I00 of MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe.
[-]
|
Type:
|
Artículo
|