Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchez-De la Nava, Ana María | es_ES |
dc.contributor.author | Arenal, Angel | es_ES |
dc.contributor.author | Fernández-Avilés, Francisco | es_ES |
dc.contributor.author | Atienza, Felipe | es_ES |
dc.date.accessioned | 2024-05-20T18:09:15Z | |
dc.date.available | 2024-05-20T18:09:15Z | |
dc.date.issued | 2021-12-27 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204318 | |
dc.description.abstract | [EN] Background: Antiarrhythmic drugs are the first-line treatment for atrial fibrillation (AF), but their effect is highly dependent on the characteristics of the patient. Moreover, anatomical variability, and specifically atrial size, have also a strong influence on AF recurrence. Objective: We performed a proof-of-concept study using artificial intelligence (AI) that enabled us to identify proarrhythmic profiles based on pattern identification from in silico simulations. Methods: A population of models consisting of 127 electrophysiological profiles with a variation of nine electrophysiological variables (G Na , I NaK , G K1, G CaL , G Kur , I KCa , [Na] ext , and [K] ext and diffusion) was simulated using the Koivumaki atrial model on square planes corresponding to a normal (16 cm2) and dilated (22.5 cm2) atrium. The simple pore channel equation was used for drug implementation including three drugs (isoproterenol, flecainide, and verapamil). We analyzed the effect of every ionic channel combination to evaluate arrhythmia induction. A Random Forest algorithm was trained using the population of models and AF inducibility as input and output, respectively. The algorithm was trained with 80% of the data (N = 832) and 20% of the data was used for testing with a k-fold cross-validation (k = 5). Results: We found two electrophysiological patterns derived from the AI algorithm that was associated with proarrhythmic behavior in most of the profiles, where G K1 was identified as the most important current for classifying the proarrhythmicity of a given profile. Additionally, we found different effects of the drugs depending on the electrophysiological profile and a higher tendency of the dilated tissue to fibrillate (Small tissue: 80 profiles vs Dilated tissue: 87 profiles). Conclusion: Artificial intelligence algorithms appear as a novel tool for electrophysiological pattern identification and analysis of the effect of antiarrhythmic drugs on a heterogeneous population of patients with AF. | es_ES |
dc.description.sponsorship | This work was supported in part by the Instituto de Salud Carlos III (PI16/01123, DTS16/0160, PI17/01059, PI20/01618, and PI18.01895), Spanish Ministry of Science and Innovation (CIBERCV), and European Union s H2020 Program under grant agreement No. 874827 (BRAVE), and cofunded by Fondo Europeo de Desarrollo Regional (FEDER), EIT Health 19600 AFFINE | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Computational models | es_ES |
dc.subject | Decision tree | es_ES |
dc.subject | Drug safety | es_ES |
dc.subject | Safety pharmacology | es_ES |
dc.title | Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2021.768468 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/874827/EU/Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI17%2F01059/ES/ESTRATIFICACION Y TRATAMIENTO DE LA FIBRILACION AURICULAR BASADA EN LOS MECANISMOS DE PERPETUACION DE LA ARRITMIA (STRATIFY-AF)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI18%2F01895/ES/ABLACION RADIAL PARA CONTROL DE LA FIBRILACION AURICULAR PERSISTENTE (ARTIST TRIAL)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI20%2F01618/ES/CARACTERIZACION DEL SUSTRATO ELECTROFISIOLOGICO EN PACIENTES CON FIBRILACION AURICULAR PERSISTENTE Y PAROXISTICA. ESTUDIO: PAPER-AF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER//EITHealth 19600 AFFINE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//DTS16%2F0160 / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI20%2F01618/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sanchez-De La Nava, AM.; Arenal, A.; Fernández-Avilés, F.; Atienza, F. (2021). Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach. Frontiers in Physiology. https://doi.org/10.3389/fphys.2021.768468 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2021.768468 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.identifier.pmid | 34938202 | es_ES |
dc.identifier.pmcid | PMC8685526 | es_ES |
dc.relation.pasarela | S\452173 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |