- -

Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez-De la Nava, Ana María es_ES
dc.contributor.author Arenal, Angel es_ES
dc.contributor.author Fernández-Avilés, Francisco es_ES
dc.contributor.author Atienza, Felipe es_ES
dc.date.accessioned 2024-05-20T18:09:15Z
dc.date.available 2024-05-20T18:09:15Z
dc.date.issued 2021-12-27 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/204318
dc.description.abstract [EN] Background: Antiarrhythmic drugs are the first-line treatment for atrial fibrillation (AF), but their effect is highly dependent on the characteristics of the patient. Moreover, anatomical variability, and specifically atrial size, have also a strong influence on AF recurrence. Objective: We performed a proof-of-concept study using artificial intelligence (AI) that enabled us to identify proarrhythmic profiles based on pattern identification from in silico simulations. Methods: A population of models consisting of 127 electrophysiological profiles with a variation of nine electrophysiological variables (G Na , I NaK , G K1, G CaL , G Kur , I KCa , [Na] ext , and [K] ext and diffusion) was simulated using the Koivumaki atrial model on square planes corresponding to a normal (16 cm2) and dilated (22.5 cm2) atrium. The simple pore channel equation was used for drug implementation including three drugs (isoproterenol, flecainide, and verapamil). We analyzed the effect of every ionic channel combination to evaluate arrhythmia induction. A Random Forest algorithm was trained using the population of models and AF inducibility as input and output, respectively. The algorithm was trained with 80% of the data (N = 832) and 20% of the data was used for testing with a k-fold cross-validation (k = 5). Results: We found two electrophysiological patterns derived from the AI algorithm that was associated with proarrhythmic behavior in most of the profiles, where G K1 was identified as the most important current for classifying the proarrhythmicity of a given profile. Additionally, we found different effects of the drugs depending on the electrophysiological profile and a higher tendency of the dilated tissue to fibrillate (Small tissue: 80 profiles vs Dilated tissue: 87 profiles). Conclusion: Artificial intelligence algorithms appear as a novel tool for electrophysiological pattern identification and analysis of the effect of antiarrhythmic drugs on a heterogeneous population of patients with AF. es_ES
dc.description.sponsorship This work was supported in part by the Instituto de Salud Carlos III (PI16/01123, DTS16/0160, PI17/01059, PI20/01618, and PI18.01895), Spanish Ministry of Science and Innovation (CIBERCV), and European Union s H2020 Program under grant agreement No. 874827 (BRAVE), and cofunded by Fondo Europeo de Desarrollo Regional (FEDER), EIT Health 19600 AFFINE es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Computational models es_ES
dc.subject Decision tree es_ES
dc.subject Drug safety es_ES
dc.subject Safety pharmacology es_ES
dc.title Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2021.768468 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/874827/EU/Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI17%2F01059/ES/ESTRATIFICACION Y TRATAMIENTO DE LA FIBRILACION AURICULAR BASADA EN LOS MECANISMOS DE PERPETUACION DE LA ARRITMIA (STRATIFY-AF)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI18%2F01895/ES/ABLACION RADIAL PARA CONTROL DE LA FIBRILACION AURICULAR PERSISTENTE (ARTIST TRIAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI20%2F01618/ES/CARACTERIZACION DEL SUSTRATO ELECTROFISIOLOGICO EN PACIENTES CON FIBRILACION AURICULAR PERSISTENTE Y PAROXISTICA. ESTUDIO: PAPER-AF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01123/ES/Regeneración Cardiaca de Infarto Crónico Porcino mediante Inyecciónes Intramiocardiacas de Células Progenitoras Embebidas en Hidrogeles de Matriz Decelularizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//EITHealth 19600 AFFINE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//DTS16%2F0160 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI20%2F01618/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sanchez-De La Nava, AM.; Arenal, A.; Fernández-Avilés, F.; Atienza, F. (2021). Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach. Frontiers in Physiology. https://doi.org/10.3389/fphys.2021.768468 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2021.768468 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.identifier.pmid 34938202 es_ES
dc.identifier.pmcid PMC8685526 es_ES
dc.relation.pasarela S\452173 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem