Mostrar el registro sencillo del ítem
dc.contributor.author | Zambrano-Abad, Julio Cesar | es_ES |
dc.contributor.author | Herrero Durá, Juan Manuel | es_ES |
dc.contributor.author | Sanchís Saez, Javier | es_ES |
dc.contributor.author | Martínez Iranzo, Miguel Andrés | es_ES |
dc.date.accessioned | 2024-05-21T18:08:22Z | |
dc.date.available | 2024-05-21T18:08:22Z | |
dc.date.issued | 2020-02-21 | es_ES |
dc.identifier.issn | 1076-2787 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204335 | |
dc.description | "This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] Wiener, Hammerstein, and Wiener-Hammerstein structures are useful for modelling dynamic systems that exhibit a static type nonlinearity. Many methods to identify these systems can be found in the literature; however, choosing a method requires prior knowledge about the location of the static nonlinearity. In addition, existing methods are rigid and exclusive for a single structure. This paper presents a unified approach for the identification of Wiener, Hammerstein, and Wiene-Hammerstein models. This approach is based on the use of multistep excitation signals and WH-EA (an evolutionary algorithm for Wiener¿Hammerstein system identification). The use of multistep signals will take advantage of certain properties of the algorithm, allowing it to be used as it is to identify the three types of structures without the need for the user to know a priori the process structure. In addition, since not all processes can be excited with Gaussian signals, the best linear approximation (BLA) will not be required. Performance of the proposed method is analysed using three numerical simulation examples and a real thermal process. Results show that the proposed approach is useful for identifying Wiener, Hammerstein, and Wiener-Hammerstein models, without requiring prior information on the type of structure to be identified. | es_ES |
dc.description.sponsorship | This work was partially supported by projects DPI2015-71443-R and RTI2018-096904-B-I00 from the Spanish Ministry of Economy and Competitiveness and was also supported by Salesian Polytechnic University in Ecuador through a PhD scholarship granted to J. Z. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Complexity | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Evolutionary algorithms | es_ES |
dc.subject | Wiener models | es_ES |
dc.subject | Hammerstein models | es_ES |
dc.subject | Wiener-hammerstein models | es_ES |
dc.subject | Non linear identification | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | A Unified Approach for the Identification of Wiener, Hammerstein, and Wiener Hammerstein Models by Using WH-EA and Multistep Signals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2020/7132349 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Zambrano-Abad, JC.; Herrero Durá, JM.; Sanchís Saez, J.; Martínez Iranzo, MA. (2020). A Unified Approach for the Identification of Wiener, Hammerstein, and Wiener Hammerstein Models by Using WH-EA and Multistep Signals. Complexity. 2020:1-23. https://doi.org/10.1155/2020/7132349 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2020/7132349 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2020 | es_ES |
dc.relation.pasarela | S\405166 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universidad Politécnica Salesiana, Ecuador | es_ES |