Mostrar el registro sencillo del ítem
dc.contributor.author | Arnau-Notari, Andres Roger | es_ES |
dc.contributor.author | Calabuig, J. M. | es_ES |
dc.contributor.author | Erdogan, Ezgi | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.date.accessioned | 2024-05-22T18:07:53Z | |
dc.date.available | 2024-05-22T18:07:53Z | |
dc.date.issued | 2023-04 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204372 | |
dc.description.abstract | [EN] We present a new class of Lipschitz operators on Euclidean lattices that we call lattice Lipschitz maps, and we prove that the associated McShane and Whitney formulas provide the same extension result that holds for the real valued case. Essentially, these maps satisfy a (vector-valued) Lipschitz inequality involving the order of the lattice, with the peculiarity that the usual Lipschitz constant becomes a positive real function. Our main result shows that, in the case of Euclidean space, being lattice Lipschitz is equivalent to having a diagonal representation, in which the coordinate coefficients are real-valued Lipschitz functions. We also show that in the linear case the extension of a diagonalizable operator from the values in their eigenvectors coincide with the operator obtained both from the McShane and the Whitney formulae. Our work on such extension/representation formulas is intended to follow current research on the design of machine learning algorithms based on the extension of Lipschitz functions. | es_ES |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Lipschitz | es_ES |
dc.subject | Operator | es_ES |
dc.subject | Banach lattice | es_ES |
dc.subject | Eigenvalue | es_ES |
dc.subject | Extension | es_ES |
dc.subject | Diagonal | es_ES |
dc.subject | Euclidean space | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Extension procedures for lattice Lipschitz operators on Euclidean spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-023-01402-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Arnau-Notari, AR.; Calabuig, JM.; Erdogan, E.; Sánchez Pérez, EA. (2023). Extension procedures for lattice Lipschitz operators on Euclidean spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 117(2):1-16. https://doi.org/10.1007/s13398-023-01402-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-023-01402-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\488601 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |