- -

Extension procedures for lattice Lipschitz operators on Euclidean spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extension procedures for lattice Lipschitz operators on Euclidean spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arnau-Notari, Andres Roger es_ES
dc.contributor.author Calabuig, J. M. es_ES
dc.contributor.author Erdogan, Ezgi es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2024-05-22T18:07:53Z
dc.date.available 2024-05-22T18:07:53Z
dc.date.issued 2023-04 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204372
dc.description.abstract [EN] We present a new class of Lipschitz operators on Euclidean lattices that we call lattice Lipschitz maps, and we prove that the associated McShane and Whitney formulas provide the same extension result that holds for the real valued case. Essentially, these maps satisfy a (vector-valued) Lipschitz inequality involving the order of the lattice, with the peculiarity that the usual Lipschitz constant becomes a positive real function. Our main result shows that, in the case of Euclidean space, being lattice Lipschitz is equivalent to having a diagonal representation, in which the coordinate coefficients are real-valued Lipschitz functions. We also show that in the linear case the extension of a diagonalizable operator from the values in their eigenvectors coincide with the operator obtained both from the McShane and the Whitney formulae. Our work on such extension/representation formulas is intended to follow current research on the design of machine learning algorithms based on the extension of Lipschitz functions. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Lipschitz es_ES
dc.subject Operator es_ES
dc.subject Banach lattice es_ES
dc.subject Eigenvalue es_ES
dc.subject Extension es_ES
dc.subject Diagonal es_ES
dc.subject Euclidean space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Extension procedures for lattice Lipschitz operators on Euclidean spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-023-01402-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Arnau-Notari, AR.; Calabuig, JM.; Erdogan, E.; Sánchez Pérez, EA. (2023). Extension procedures for lattice Lipschitz operators on Euclidean spaces. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 117(2):1-16. https://doi.org/10.1007/s13398-023-01402-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s13398-023-01402-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\488601 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem