- -

On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aslan, Antonio es_ES
dc.contributor.author Diez, José-Luís es_ES
dc.contributor.author Laguna Sanz, Alejandro José es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.date.accessioned 2024-05-23T18:05:14Z
dc.date.available 2024-05-23T18:05:14Z
dc.date.issued 2023 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204384
dc.description.abstract [EN] Most advanced technologies for the treatment of type 1 diabetes, such as sensor-pump integrated systems or the artificial pancreas, require accurate glucose predictions on a given future time-horizon as a basis for decision-making support systems. Seasonal stochastic models are data-driven algebraic models that use recent history data and periodic trends to accurately estimate time series data, such as glucose concentration in diabetes. These models have been proven to be a good option to provide accurate blood glucose predictions under free-living conditions. These models can cope with patient variability under variable-length time-stamped daily events in supervision and control applications. However, the seasonal-models-based framework usually needs of several months of data per patient to be fed into the system to adequately train a personalized glucose predictor for each patient. In this work, an in silico analysis of the accuracy of prediction is presented, considering the effect of training a glucose predictor with data from a cohort of patients (population) instead of data from a single patient (individual). Feasibility of population data as an input to the model is asserted, and the effect of the dataset size in the determination of the minimum amount of data for a valid training of the models is studied. Results show that glucose predictors trained with population data can provide predictions of similar magnitude as those trained with individualized data. Overall median root mean squared error (RMSE) (including 25% and 75% percentiles) for the predictor trained with population data are {6.96[4.87,8.67], 12.49[7.96,14.23], 19.52[10.62,23.37], 28.79[12.96,34.57], 32.3[16.20,41.59], 28.8[15.13,37.18]} mg/dL, for prediction horizons (PH) of {15,30,60,120,180,240} min, respectively, while the baseline of the individually trained RMSE results are {6.37[5.07,6.70], 11.27[8.35,12.65], 17.44[11.08,20.93], 22.72[14.29,28.19], 28.45[14.79,34.38], 25.58[13.10,36.60]} mg/dL, both training with 16 weeks of data. Results also show that the use of the population approach reduces the required training data by half, without losing any prediction capability. es_ES
dc.description.sponsorship This work was supported by grant PID2019-107722RB-C21 funded by MCIN/AEI/10.13039/501100011033, by grant CIPROM/2021/012 funded by Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital from Generalitat Valenciana, by CIBER -Consorcio Centro de Investigacion Biomedica en Redgroup number CB17/08/00004, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovacion and by European Union-European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Type 1 diabetes es_ES
dc.subject Glucose prediction es_ES
dc.subject Clustering es_ES
dc.subject Seasonal local models es_ES
dc.subject Individual data es_ES
dc.subject Population data es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app13095348 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-107722RB-C21//SOLUCIONES A MEDIDA DEL PACIENTE PARA EL CONTROL DE GLUCOSA EN SANGRE EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIPROM%2F2021%2F012//Beyond hybrid artificial pancreas systems: relieving carb counting via flexible-user-interaction multiple-input control architectures/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//CB17%2F08%2F00004//CIBERdem/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Aslan, A.; Diez, J.; Laguna Sanz, AJ.; Bondía Company, J. (2023). On the Use of Population Data for Training Seasonal Local Models-Based Glucose Predictors: An In Silico Study. Applied Sciences. 13(9). https://doi.org/10.3390/app13095348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app13095348 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\516505 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem