Mostrar el registro sencillo del ítem
dc.contributor.author | Velásquez, Carlos | es_ES |
dc.contributor.author | Aleixos Borrás, María Nuria | es_ES |
dc.contributor.author | Cubero, Sergio | es_ES |
dc.contributor.author | Gomez-Sanchis, Juan | es_ES |
dc.contributor.author | Prieto, Flavio | es_ES |
dc.contributor.author | Blasco, José | es_ES |
dc.date.accessioned | 2024-05-27T18:08:04Z | |
dc.date.available | 2024-05-27T18:08:04Z | |
dc.date.issued | 2024-03 | es_ES |
dc.identifier.issn | 0925-5214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204440 | |
dc.description.abstract | [EN] Anthracnose, caused by Colletotrichum sp. infections, poses a significant threat to mango production worldwide, resulting in substantial losses. This devastating disease is challenging to detect and control, primarily due to its ability to spread rapidly. The methods currently used to control anthracnose are primarily corrective, relying on disease detection in the late stages when the infection becomes visible. Hence, there is a need for tools to detect the infection at early stages, before symptoms appear. Hyperspectral imaging systems are promising for developing non-destructive solutions to assess and detect external and internal damage in fruit, including decay caused by anthracnose. These advanced imaging systems make early detection possible before the symptoms are visible, allowing for timely intervention and potentially more effective disease control. This work aims to evaluate the possibility of early detection of anthracnose in two mango cultivars using hyperspectral imaging and machine learning methods. Secondly, to establish correlations between specific wavelengths and the physicochemical symptoms associated with anthracnose. Lastly, to develop a robust model for the spectral detection of anthracnose on mango fruit. Mangoes were inoculated with spores of Colletotrichum gloeosporioides. Hyperspectral images of control and infected fruit were captured in the 450-970 nm spectral range. Five machinelearning models were used to obtain the method that best fits the spectral data. The best model achieved an accuracy = 0.961, recall = 0.961, specificity = 0.992, F1 = 0.961 and Matthews correlation coefficient (MCC) = 0.953 for 'Keitt', and an accuracy = 0.975, recall = 0.976, specificity = 0.995, F1 = 0.975 and MCC = 0.971 for 'Osteen', showing the feasibility to detect early anthracnose infection in mango fruit within 48 h after pathogen inoculation. | es_ES |
dc.description.sponsorship | This work was partially funded by the Ministerio de Ciencia y Tecnologia de Colombia (MINCIENCIAS) through its call "convocatoria 785 para doctorados nacionales 2017", Universidad Nacional de Colombia through its programmes "convocatoria nacional para el fomento de alianzas interdisciplinarias queue articulen investigacion, creacion, extension y formacion en la Universidad Nacional de Colombia 2019-2021" and through MICIN-AEI projects PID2019-107347RR-C31- C32-C33 with ERDF funds of the GVA 2021-2027, and GVA-PROMETEO CIPROM/2021/014. Authors thank Prof Dr Lluis Palou and Veronica Taberner, from the Postharvest Technology Center (CTP) of the IVIA, for providing the inoculum and technical suport. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Postharvest Biology and Technology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mangifera indica L. | es_ES |
dc.subject | Anthracnose detection | es_ES |
dc.subject | Wavelength selection | es_ES |
dc.subject | Fruit quality | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Enhancing anthracnose detection in mango at early stages using hyperspectral imaging and machine learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.postharvbio.2023.112732 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107347RR-C31/ES/INSPECCION NO DESTRUCTIVA Y PREDICCION DE LA CALIDAD INTERNA Y PROPIEDADES DE LAS FRUTAS MEDIANTE ESPECTROSCOPIA VIS%2FNIR Y MODELOS BASADOS EN APRENDIZAJE PROFUNDO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107347RR-C32/ES/INSPECCION Y PREDICCION NO DESTRUCTIVA DE CALIDAD INTERNA Y PROPIEDADES DE FRUTAS UTILIZANDO IMAGEN HIPERESPECTRAL VIS%2FNIR UTILIZANDO MODELOS BASADOS EN APRENDIZAJE PROFUNDO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107347RR-C33/ES/ALGORITMOS DE INTELIGENCIA ARTIFICIAL BASADOS EN APRENDIZAJE PROFUNDO Y REDES GAN PARA EL ANALISIS DE DATOS ESPECTRALES EN PROBLEMAS DE INSPECCION DE FRUTA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIPROM%2F2021%2F014/ | es_ES |
dc.rights.accessRights | Embargado | es_ES |
dc.date.embargoEndDate | 2025-12-21 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Velásquez, C.; Aleixos Borrás, MN.; Cubero, S.; Gomez-Sanchis, J.; Prieto, F.; Blasco, J. (2024). Enhancing anthracnose detection in mango at early stages using hyperspectral imaging and machine learning. Postharvest Biology and Technology. 209. https://doi.org/10.1016/j.postharvbio.2023.112732 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.postharvbio.2023.112732 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 209 | es_ES |
dc.relation.pasarela | S\513154 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universidad Nacional de Colombia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |