- -

Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galdeano-Ruano, Carmen Piedad es_ES
dc.contributor.author Márquez, Inmaculada es_ES
dc.contributor.author Lopes, Christian Wittee es_ES
dc.contributor.author Calvente, Juan Jose es_ES
dc.contributor.author Agostini, Giovanni es_ES
dc.contributor.author Roldan, Alberto es_ES
dc.contributor.author Olloqui-Sariego, Jose Luis es_ES
dc.contributor.author Oña-Burgos, Pascual es_ES
dc.date.accessioned 2024-05-28T18:17:06Z
dc.date.available 2024-05-28T18:17:06Z
dc.date.issued 2024-01-02 es_ES
dc.identifier.issn 0360-3199 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204450
dc.description.abstract [EN] The practical production of hydrogen from water electrolyzers demands efficient electrocatalysts with maximized and optimized active sites that promote the Hydrogen Evolution Reaction (HER) at wide pH ranges. Herein, we successfully synthesized a rhodium-based nanomaterial with extremely low metal loading (2 mu g/cm(-2)) as electrocatalyst for the HER. In particular, the material consists of carbon-supported rhodium phosphide (Rh2P) as active sites, which are partially covered with carbon patches. The so-developed nanomaterial exhibits high crystallinity, resistance to sintering, and outstanding electrocatalytic activity and operational stability in an extended pH interval. Notably, Rh2P displays specific-mass activities, ca. 2.5- and 5-fold higher than those of the benchmark 20 wt% Pt/C at an overpotential of 50 mV in acidic and alkaline media, respectively. Comparison of the electrocatalytic performance of the current Rh2P electrocatalyst with those of phosphorus-free rhodium NPs and an alternative rhodium phosphide nanomaterial, reveals that the inclusion of phosphorus atoms, the purity and crystallinity of the Rh2P phase are critical to boost the electrocatalytic HER. This is corroborated by theoretical simulations using DFT, which also prove that the presence of C-patches on Rh2P favors the H2O dissociation during HER electrocatalytic cycle and prevents phosphorous leaching. Overall, this work provides new insights for the rational design and controlled synthesis of small NPs for using as efficient electrocatalysts in hydrogen-based renewable energy devices. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). es_ES
dc.description.sponsorship CGR thanks toMINECO for her FPU Ph.D. contract FPU17/04172. CWL thanks the PRH 50.1 e ANP/FINEP Human Resources Program for the Visiting Researcher Fellowship. These experiments were performed at CLAESS beamline at ALBA Synchrotron with the collaboration of ALBA staff. S. Guti~errez-Tarri~no, J. S. Martinez, A. Garci ' a-Zaragoza and W. Henao are acknowledged for their assistance with XAS data acquisition. Authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00, PID2021-126799NB-I00, TED2021130191B-C41, supported by MCIN/AEI/10.13039/501100011033 and by Uni~on Europea NextGenerationEU/PRTR, and TED2021130191B-C42), Junta de Andaluci ' a (P20_01027 and PYC 20 RE 060 UAL) and Generalitat Valenciana (MFA/2022/047, Advanced Materials programme, which was supported by MCIN with funding fromEuropean Union NextGeneration EU PRTR-C17.I1 and Generalitat Valenciana). We are thankful for the Electron Microscopy Service of the UPV for TEM facilities. We also acknowledge Supercomputing Wales for access to the Hawk HPC facility, part-funded by the European Regional Development Fund via the Welsh Government. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Journal of Hydrogen Energy es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Rh2P nanoparticles es_ES
dc.subject Electrocatalysis es_ES
dc.subject Hydrogen Evolution Reaction es_ES
dc.subject PH universal es_ES
dc.subject DFT simulations es_ES
dc.title Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ijhydene.2023.07.206 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126799NB-I00/ES/RACIONALIZACION DE LOS FACTORES QUE REGULAN LA TRANSFERENCIA DE CARGA Y CATALISIS EN BIOELECTRODOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//PYC 20 RE 060 UAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P20_01027/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPU17%2F04172/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FINEP//PRH 50.1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130191B-C41//Ayudas públicas a proyectos estratégicos orientados a la transición ecológica y a la transición digital, convocatoria 2021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130191B-C42/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIUCSD//MFA%2F2022%2F047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Galdeano-Ruano, CP.; Márquez, I.; Lopes, CW.; Calvente, JJ.; Agostini, G.; Roldan, A.; Olloqui-Sariego, JL.... (2024). Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy. 51:1200-1216. https://doi.org/10.1016/j.ijhydene.2023.07.206 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ijhydene.2023.07.206 es_ES
dc.description.upvformatpinicio 1200 es_ES
dc.description.upvformatpfin 1216 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.relation.pasarela S\513778 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Financiadora de Estudos e Projetos, Brasil es_ES
dc.contributor.funder Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem