Mostrar el registro sencillo del ítem
dc.contributor.author | Galdeano-Ruano, Carmen Piedad | es_ES |
dc.contributor.author | Márquez, Inmaculada | es_ES |
dc.contributor.author | Lopes, Christian Wittee | es_ES |
dc.contributor.author | Calvente, Juan Jose | es_ES |
dc.contributor.author | Agostini, Giovanni | es_ES |
dc.contributor.author | Roldan, Alberto | es_ES |
dc.contributor.author | Olloqui-Sariego, Jose Luis | es_ES |
dc.contributor.author | Oña-Burgos, Pascual | es_ES |
dc.date.accessioned | 2024-05-28T18:17:06Z | |
dc.date.available | 2024-05-28T18:17:06Z | |
dc.date.issued | 2024-01-02 | es_ES |
dc.identifier.issn | 0360-3199 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204450 | |
dc.description.abstract | [EN] The practical production of hydrogen from water electrolyzers demands efficient electrocatalysts with maximized and optimized active sites that promote the Hydrogen Evolution Reaction (HER) at wide pH ranges. Herein, we successfully synthesized a rhodium-based nanomaterial with extremely low metal loading (2 mu g/cm(-2)) as electrocatalyst for the HER. In particular, the material consists of carbon-supported rhodium phosphide (Rh2P) as active sites, which are partially covered with carbon patches. The so-developed nanomaterial exhibits high crystallinity, resistance to sintering, and outstanding electrocatalytic activity and operational stability in an extended pH interval. Notably, Rh2P displays specific-mass activities, ca. 2.5- and 5-fold higher than those of the benchmark 20 wt% Pt/C at an overpotential of 50 mV in acidic and alkaline media, respectively. Comparison of the electrocatalytic performance of the current Rh2P electrocatalyst with those of phosphorus-free rhodium NPs and an alternative rhodium phosphide nanomaterial, reveals that the inclusion of phosphorus atoms, the purity and crystallinity of the Rh2P phase are critical to boost the electrocatalytic HER. This is corroborated by theoretical simulations using DFT, which also prove that the presence of C-patches on Rh2P favors the H2O dissociation during HER electrocatalytic cycle and prevents phosphorous leaching. Overall, this work provides new insights for the rational design and controlled synthesis of small NPs for using as efficient electrocatalysts in hydrogen-based renewable energy devices. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). | es_ES |
dc.description.sponsorship | CGR thanks toMINECO for her FPU Ph.D. contract FPU17/04172. CWL thanks the PRH 50.1 e ANP/FINEP Human Resources Program for the Visiting Researcher Fellowship. These experiments were performed at CLAESS beamline at ALBA Synchrotron with the collaboration of ALBA staff. S. Guti~errez-Tarri~no, J. S. Martinez, A. Garci ' a-Zaragoza and W. Henao are acknowledged for their assistance with XAS data acquisition. Authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00, PID2021-126799NB-I00, TED2021130191B-C41, supported by MCIN/AEI/10.13039/501100011033 and by Uni~on Europea NextGenerationEU/PRTR, and TED2021130191B-C42), Junta de Andaluci ' a (P20_01027 and PYC 20 RE 060 UAL) and Generalitat Valenciana (MFA/2022/047, Advanced Materials programme, which was supported by MCIN with funding fromEuropean Union NextGeneration EU PRTR-C17.I1 and Generalitat Valenciana). We are thankful for the Electron Microscopy Service of the UPV for TEM facilities. We also acknowledge Supercomputing Wales for access to the Hawk HPC facility, part-funded by the European Regional Development Fund via the Welsh Government. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Hydrogen Energy | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Rh2P nanoparticles | es_ES |
dc.subject | Electrocatalysis | es_ES |
dc.subject | Hydrogen Evolution Reaction | es_ES |
dc.subject | PH universal | es_ES |
dc.subject | DFT simulations | es_ES |
dc.title | Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijhydene.2023.07.206 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126799NB-I00/ES/RACIONALIZACION DE LOS FACTORES QUE REGULAN LA TRANSFERENCIA DE CARGA Y CATALISIS EN BIOELECTRODOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//PYC 20 RE 060 UAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//P20_01027/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPU17%2F04172/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FINEP//PRH 50.1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-130191B-C41//Ayudas públicas a proyectos estratégicos orientados a la transición ecológica y a la transición digital, convocatoria 2021/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-130191B-C42/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIUCSD//MFA%2F2022%2F047/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Galdeano-Ruano, CP.; Márquez, I.; Lopes, CW.; Calvente, JJ.; Agostini, G.; Roldan, A.; Olloqui-Sariego, JL.... (2024). Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy. 51:1200-1216. https://doi.org/10.1016/j.ijhydene.2023.07.206 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijhydene.2023.07.206 | es_ES |
dc.description.upvformatpinicio | 1200 | es_ES |
dc.description.upvformatpfin | 1216 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.relation.pasarela | S\513778 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Financiadora de Estudos e Projetos, Brasil | es_ES |
dc.contributor.funder | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana | es_ES |
dc.contributor.funder | Universitat Politècnica de València |