- -

Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Millán-Cabrera, Reisel es_ES
dc.contributor.author Bello-Jurado, Estefanía es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Gomez-Bombarelli, Rafael es_ES
dc.date.accessioned 2024-05-29T18:11:51Z
dc.date.available 2024-05-29T18:11:51Z
dc.date.issued 2023-10-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204513
dc.description Creative Commons Attribution License or Creative Commons Attribution Non-Commercial No Derivatives License es_ES
dc.description.abstract [EN] Cu-exchanged zeolites rely on mobile solvated Cu+ cations for their catalytic activity, but the role of the framework composition in transport is not fully understood. Ab initio molecular dynamics simulations can provide quantitative atomistic insight but are too computationally expensive to explore large length and time scales or diverse compositions. We report a machine-learning interatomic potential that accurately reproduces ab initio results and effectively generalizes to allow multinanosecond simulations of large supercells and diverse chemical compositions. Biased and unbiased simulations of [Cu(NH3)2]+ mobility show that aluminum pairing in eight-membered rings accelerates local hopping and demonstrate that increased NH3 concentration enhances long-range diffusion. The probability of finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity tests of Cu-CHA catalysts with a controlled chemical composition. es_ES
dc.description.sponsorship R.M. acknowledges the Margarita Salas grant from the Ministerio de Universidades, Spain, funded by the European Union-Next Generation EU. The authors are grateful for computation time allocated on the MIT SuperCloud cluster, the MIT Engaging cluster at the Massachusetts Green High Performance Computing Center (MGHPCC), and Summit at the Oakridge Leadership Computing Facility through the 2021 ALCC DOE program. R.G-B. thanks the Jeffrey Cheah Career Development Chair. R.M thanks Gavin Winter for assistance during the training of NNP and processing of the MD simulations and Simon Axelrod for implementing PaiNN. M.B. and M.M. are grateful for financial support from the Spanish government through PID2020-112590GB-C21, PID2021-122755OB-I00, and TED2021-130739B-I00 (MCIN/AEI/FEDER, UE) and from CSIC through the I-link+ Program (LINKA20381). E.B.-J. acknowledges the Spanish government-MCIU for a FPI scholarship (PRE2019-088360). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Central Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Catalysts es_ES
dc.subject Cations es_ES
dc.subject Diffusion es_ES
dc.subject Mathematical methods es_ES
dc.subject Zeolites es_ES
dc.title Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acscentsci.3c00870 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministerio de Ciencia e Innovación//PID2020-112590GB-C21//MATERIALES HIBRIDOS DE BAJA DIMENSIONALIDAD CON MORFOLOGIA, ESTRUCTURACION Y REACTIVIDAD CONTROLABLE PARA LLEVAR A CABO PROCESOS CATALITICOS Y NANOTECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNIVERSIDAD POLITECNICA DE VALENCIA//MS%2F8//AYUDA MARGARITA SALAS DE CABRERA MILLAN, REISEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministerio de Ciencia e Innovación//PID2021-122755OB-I00//CATALIZADORES MULTI-FUNCIONALES CON APLICACIÓN EN PROCESOS DE INTERÉS MEDIOAMBIENTAL E INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//LINKA20381/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//PRE2019-088360/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130739B-I00//Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Convocatoria 2021/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Millán-Cabrera, R.; Bello-Jurado, E.; Moliner Marin, M.; Boronat Zaragoza, M.; Gomez-Bombarelli, R. (2023). Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics. ACS Central Science. 9(11):2044-2056. https://doi.org/10.1021/acscentsci.3c00870 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acscentsci.3c00870 es_ES
dc.description.upvformatpinicio 2044 es_ES
dc.description.upvformatpfin 2056 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2374-7951 es_ES
dc.identifier.pmid 38033797 es_ES
dc.identifier.pmcid PMC10683499 es_ES
dc.relation.pasarela S\504301 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder UNIVERSIDAD POLITECNICA DE VALENCIA es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem