Mostrar el registro sencillo del ítem
dc.contributor.author | Millán-Cabrera, Reisel | es_ES |
dc.contributor.author | Bello-Jurado, Estefanía | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Gomez-Bombarelli, Rafael | es_ES |
dc.date.accessioned | 2024-05-29T18:11:51Z | |
dc.date.available | 2024-05-29T18:11:51Z | |
dc.date.issued | 2023-10-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204513 | |
dc.description | Creative Commons Attribution License or Creative Commons Attribution Non-Commercial No Derivatives License | es_ES |
dc.description.abstract | [EN] Cu-exchanged zeolites rely on mobile solvated Cu+ cations for their catalytic activity, but the role of the framework composition in transport is not fully understood. Ab initio molecular dynamics simulations can provide quantitative atomistic insight but are too computationally expensive to explore large length and time scales or diverse compositions. We report a machine-learning interatomic potential that accurately reproduces ab initio results and effectively generalizes to allow multinanosecond simulations of large supercells and diverse chemical compositions. Biased and unbiased simulations of [Cu(NH3)2]+ mobility show that aluminum pairing in eight-membered rings accelerates local hopping and demonstrate that increased NH3 concentration enhances long-range diffusion. The probability of finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity tests of Cu-CHA catalysts with a controlled chemical composition. | es_ES |
dc.description.sponsorship | R.M. acknowledges the Margarita Salas grant from the Ministerio de Universidades, Spain, funded by the European Union-Next Generation EU. The authors are grateful for computation time allocated on the MIT SuperCloud cluster, the MIT Engaging cluster at the Massachusetts Green High Performance Computing Center (MGHPCC), and Summit at the Oakridge Leadership Computing Facility through the 2021 ALCC DOE program. R.G-B. thanks the Jeffrey Cheah Career Development Chair. R.M thanks Gavin Winter for assistance during the training of NNP and processing of the MD simulations and Simon Axelrod for implementing PaiNN. M.B. and M.M. are grateful for financial support from the Spanish government through PID2020-112590GB-C21, PID2021-122755OB-I00, and TED2021-130739B-I00 (MCIN/AEI/FEDER, UE) and from CSIC through the I-link+ Program (LINKA20381). E.B.-J. acknowledges the Spanish government-MCIU for a FPI scholarship (PRE2019-088360). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Central Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Catalysts | es_ES |
dc.subject | Cations | es_ES |
dc.subject | Diffusion | es_ES |
dc.subject | Mathematical methods | es_ES |
dc.subject | Zeolites | es_ES |
dc.title | Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acscentsci.3c00870 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministerio de Ciencia e Innovación//PID2020-112590GB-C21//MATERIALES HIBRIDOS DE BAJA DIMENSIONALIDAD CON MORFOLOGIA, ESTRUCTURACION Y REACTIVIDAD CONTROLABLE PARA LLEVAR A CABO PROCESOS CATALITICOS Y NANOTECNOLOGICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNIVERSIDAD POLITECNICA DE VALENCIA//MS%2F8//AYUDA MARGARITA SALAS DE CABRERA MILLAN, REISEL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Ministerio de Ciencia e Innovación//PID2021-122755OB-I00//CATALIZADORES MULTI-FUNCIONALES CON APLICACIÓN EN PROCESOS DE INTERÉS MEDIOAMBIENTAL E INDUSTRIAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//LINKA20381/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//PRE2019-088360/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TED2021-130739B-I00//Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital. Convocatoria 2021/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Millán-Cabrera, R.; Bello-Jurado, E.; Moliner Marin, M.; Boronat Zaragoza, M.; Gomez-Bombarelli, R. (2023). Effect of Framework Composition and NH3 on the Diffusion of Cu+ in Cu-CHA Catalysts Predicted by Machine-Learning Accelerated Molecular Dynamics. ACS Central Science. 9(11):2044-2056. https://doi.org/10.1021/acscentsci.3c00870 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acscentsci.3c00870 | es_ES |
dc.description.upvformatpinicio | 2044 | es_ES |
dc.description.upvformatpfin | 2056 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2374-7951 | es_ES |
dc.identifier.pmid | 38033797 | es_ES |
dc.identifier.pmcid | PMC10683499 | es_ES |
dc.relation.pasarela | S\504301 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |