- -

Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zamudio-Ramírez, Israel es_ES
dc.contributor.author Osornio-Rios, Roque Alfredo es_ES
dc.contributor.author Trejo-Hernandez, Miguel es_ES
dc.contributor.author Romero-Troncoso, Rene de Jesus es_ES
dc.contributor.author Antonino-Daviu, J. es_ES
dc.date.accessioned 2024-05-30T18:06:28Z
dc.date.available 2024-05-30T18:06:28Z
dc.date.issued 2019-05-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204571
dc.description.abstract [EN] Induction motors (IMs) are essential components in industrial applications. These motors have to perform numerous tasks under a wide variety of conditions, which affects performance and reliability and gradually brings faults and efficiency losses over time. Nowadays, the industrial sector demands the necessary integration of smart-sensors to effectively diagnose faults in these kinds of motors before faults can occur. One of the most frequent causes of failure in IMs is the degradation of turn insulation in windings. If this anomaly is present, an electric motor can keep working with apparent normality, but factors such as the efficiency of energy consumption and mechanical reliability may be reduced considerably. Furthermore, if not detected at an early stage, this degradation could lead to the breakdown of the insulation system, which could in turn cause catastrophic and irreversible failure to the electrical machine. This paper proposes a novel methodology and its application in a smart-sensor to detect and estimate the healthiness of the winding insulation in IMs. This methodology relies on the analysis of the external magnetic field captured by a coil sensor by applying suitable time-frequency decomposition (TFD) tools. The discrete wavelet transform (DWT) is used to decompose the signal into different approximation and detail coefficients as a pre-processing stage to isolate the studied fault. Then, due to the importance of diagnosing stator winding insulation faults during motor operation at an early stage, this proposal introduces an indicator based on wavelet entropy (WE), a single parameter capable of performing an efficient diagnosis. A smart-sensor is able to estimate winding insulation degradation in IMs using two inexpensive, reliable, and noninvasive primary sensors: a coil sensor and an E-type thermocouple sensor. The utility of these sensors is demonstrated through the results obtained from analyzing six similar IMs with differently induced severity faults. es_ES
dc.description.sponsorship We would like to thank Consejo Nacional de Ciencia y Tecnologia (CONACYT) for providing economic support in this work (scholarship). Finally, thanks to the next projects: SEP-CONACYT 222453-2013, and FOFIUAQ-FIN201812. This wok was also funded by Spanish 'Ministerio de Ciencia Innovacion y Universidades' and FEDER program in the framework of the 'Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento' (ref: PGC2018-095747-B-I00). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Induction motor es_ES
dc.subject Smart-sensor es_ES
dc.subject Stray flux es_ES
dc.subject Time-frequency transforms es_ES
dc.subject Wavelet entropy es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12091658 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PGC2018-095747-B-I00-AR//TECNOLOGIAS AVANZADAS BASADAS EN EL ANALISIS DEL FLUJO DE DISPERSION EN REGIMEN TRANSITORIO PARA EL DIAGNOSTICO PRECOZ DE ANOMALIAS ELECTROMECANICAS EN MOTORES ELECTRICOS./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONAHCYT/CONACYT//SEP-CONACYT 222453-2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UAQ//FOFIUAQ-FIN201812/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Zamudio-Ramírez, I.; Osornio-Rios, RA.; Trejo-Hernandez, M.; Romero-Troncoso, RDJ.; Antonino-Daviu, J. (2019). Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux. Energies. 12(9). https://doi.org/10.3390/en12091658 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12091658 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\412200 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universidad Autónoma de Querétaro es_ES
dc.contributor.funder Consejo Nacional de Humanidades, Ciencias y Tecnologías, México es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem