- -

Ancillary data supply strategies for improvement of temperature-based ETo ANN models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ancillary data supply strategies for improvement of temperature-based ETo ANN models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí, Pau es_ES
dc.contributor.author Gasque Albalate, Maria es_ES
dc.date.accessioned 2024-05-31T18:17:07Z
dc.date.available 2024-05-31T18:17:07Z
dc.date.issued 2010-07 es_ES
dc.identifier.issn 0378-3774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204610
dc.description.abstract [EN] The development of new and more precise models for reference evapotranspiration (ETo) estimation from minimum climatic data is mandatory, since the application of existing methods that provide acceptable results is limited to those places where large amounts of reliable climatic data are available. The performance quality of empirical equations and their local calibrations is to be questioned in a large variety of climatic contexts. As an alternative to traditional techniques, artificial neural networks (ANNs) are highly appropriate for the modelling of non-linear processes, which is the case of evapotranspiration. Nevertheless, temperature-based ANN models do not always provide accurate enough ETo estimations and their performance depends highly on the specific relationships temperature-ETo of the studied continental context. This paper describes the performance improvement of temperature-based ANN models through the consideration of exogenous ETo records as ancillary inputs in different continental contexts of the autonomous Valencia region, on the Spanish Mediterranean coast. The influence on the model performance of the number of considered ancillary stations and the corresponding number of training patterns is also analysed. Finally, this performance is compared with existing empirical and ANN temperature-based models. The proposed models can be used with high accuracy not only for infilling purposes, but also for estimating ETo outside the training station. Concerning models which demand scant climatic inputs, the proposed model provides performances with lower associated errors than the currently existing temperature-based models, which only consider local data. The local performance of the model presents 0.084 of average absolute relative error (AARE). The external performance of the model presents 0.1072 of AARE. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Agricultural Water Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural networks es_ES
dc.subject ETo estimation es_ES
dc.subject Ancillary data supply es_ES
dc.subject Continentality index es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Ancillary data supply strategies for improvement of temperature-based ETo ANN models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.agwat.2010.02.002 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Martí, P.; Gasque Albalate, M. (2010). Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agricultural Water Management. 97(7):939-955. https://doi.org/10.1016/j.agwat.2010.02.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.agwat.2010.02.002 es_ES
dc.description.upvformatpinicio 939 es_ES
dc.description.upvformatpfin 955 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\39585 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem