Mostrar el registro sencillo del ítem
dc.contributor.author | Fuster-Gómez, Sandra | es_ES |
dc.contributor.author | Castilla Cortázar, María Isabel Cecilia | es_ES |
dc.contributor.author | Vidaurre, Ana | es_ES |
dc.contributor.author | Campillo-Fernández, Alberto J. | es_ES |
dc.date.accessioned | 2024-05-31T18:17:13Z | |
dc.date.available | 2024-05-31T18:17:13Z | |
dc.date.issued | 2023-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/204614 | |
dc.description.abstract | [EN] This paper reports the preparation and character-ization of hybrid scaffolds composed of polycaprolactone (PCL) and different graphene oxide (GO) amounts, intending to incorporate the intrinsic characteristics of their constituents, such as bioactivity and biocidal effect. These materials were fabricated by a solvent-casting/particulate leaching technique showing a bimodal porosity (macro and micro) that was around 90%. The highly interconnected scaffolds were immersed in a simulated body fluid, promoting the growth of a hydroxyapatite (HAp) layer, making them ideal candidates for bone tissue engineering. The growth kinetics of the HAp layer was influenced by the GO content, a remarkable result. Furthermore, as expected, the addition of GO neither significantly improves nor reduces the compressive modulus of PCL scaffolds. The thermal behavior of composites was investigated by differential scanning calorimetry, showing an increase in crystallinity as the addition of GO raised, which implies that GO nanosheets can act as seeds to induce the crystallization of PCL. The improved bioactivity was demonstrated by the deposition of an HAp layer on the surface of the scaffold with GO, especially with a 0.1% GO content. | es_ES |
dc.description.sponsorship | The authors are grateful for the support of the Spanish Ministry of Science, Innovation and Universities through (i) PID2021-126612OB-I00 and (ii) PID2019-106099RB-C41. Also, this research was supported by (iii) CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB06/01/1026), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and (iv) H2020 FET-OPEN grant 964562. FESEM images were taken by the authors at the Microscopy Service of the Universitat Politecnica ̀ de Valencia, ̀ whose advice is greatly appreciated. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | ACS Omega | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Mechanical-properties | es_ES |
dc.subject | Composite scaffolds | es_ES |
dc.subject | Poly(epsilon-caprolactone)/graphene oxide | es_ES |
dc.subject | Crystallization behavior | es_ES |
dc.subject | Bone | es_ES |
dc.subject | Graphene | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Biomaterials | es_ES |
dc.subject | Degradation | es_ES |
dc.subject | Morphology | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Biomimetic Growth of Hydroxyapatite in Hybrid Polycaprolactone/Graphene Oxide Ultra-Porous Scaffolds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acsomega.2c07656 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106099RB-C41/ES/MICROGELES BIOMIMETICOS PARA EL ESTUDIO DE LA GENERACION DE RESISTENCIAS A FARMACOS EN EL MIELOMA MULTIPLE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126612OB-I00/ES/CONSTRUCCION EX VIVO DE ESTRUCTURAS PSEUDO-NERVIOSAS Y SU TRASLACION IN VIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSC//CB06%2F01%2F1026/ES/Desarrollo e implementación de nuevas tecnologías en biomedicina 106/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COMISION DE LAS COMUNIDADES EUROPEA//964562//REGENERATION OF INJURED SPINAL CORD BY ELECTRO PULSED BIO-HYBRID IMPLANT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV-VIN//PAID-01-19-22//Desarrollo de hidrogeles para tratamiento de lesion medular./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Fuster-Gómez, S.; Castilla Cortázar, MIC.; Vidaurre, A.; Campillo-Fernández, AJ. (2023). Biomimetic Growth of Hydroxyapatite in Hybrid Polycaprolactone/Graphene Oxide Ultra-Porous Scaffolds. ACS Omega. 8:7904-7912. https://doi.org/10.1021/acsomega.2c07656 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acsomega.2c07656 | es_ES |
dc.description.upvformatpinicio | 7904 | es_ES |
dc.description.upvformatpfin | 7912 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 2470-1343 | es_ES |
dc.identifier.pmid | 36873022 | es_ES |
dc.identifier.pmcid | PMC9979323 | es_ES |
dc.relation.pasarela | S\484718 | es_ES |
dc.contributor.funder | Ministerio de Sanidad y Consumo | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.contributor.funder | UNIVERSIDAD POLITECNICA DE VALENCIA | es_ES |